FOSTER WHEELER ENVIRONMENTAL CORPORATION

FIRST LONG-TERM SOIL VAPOR SAMPLING RESULTS, OCTOBER 1998

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JET PROPULSION LABORATORY
4800 Oak Grove Drive
Pasadena, California 91109

February 2000

FIRST LONG-TERM SOIL VAPOR SAMPLING RESULTS, OCTOBER 1998

AT THE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JET PROPULSION LABORATORY

4800 Oak Grove Drive Pasadena, California 91109

Prepared by

FOSTER WHEELER ENVIRONMENTAL CORPORATION

611 Anton Boulevard, Suite 800 Costa Mesa, California 92626

February 2000

November 2, 2000

Refer to: GEN20001102

NASA Management Office Attention: Peter Robles M/S: 180-801 4800 Oak Grove Drive Pasadena, California 91109

Subject: Long Term Quarterly Soil Vapor Monitoring Reports, Events 1

through 5.

Dear Peter:

Enclosed are 16 copies of each of the subject reports for distribution.

If you have any questions, or need further information, please feel free to contact me at 818-354-0180.

Sincerely

Charles L. Buril

Environmental Affairs Office - Manager

TABLE OF CONTENTS

			PAGE
LIST OF T	ΓAΒ	LES	ii
LIST OF F	FIGU	RES .	iii
1.0 INTR	RODI	UCTIO	DN
2.0 SOIL	VA.	POR V	WELL CONSTRUCTION2-1
3.0 SOIL	VA.	POR S	SAMPLING PROCEDURES
4.0 ANA	LYT	ICAL	RESULTS4-1
5.0 QUA	LIT	Y ASS	URANCE AND QUALITY CONTROL
6.0 REFI	ERE	NCES	
APPENDI	CES	5	
Appendix .	A -		Vapor Data Evaluation Report Long-Term Sampling Event
Appendix	В-	B-1	Results of Soil-Vapor Analyses
		B-2	Chain-of-Custody Forms
		B-3	Initial Three-Point Calibration Data
		B-4	Daily Opening, Closing, and Continuing Calibration Verification Reports

LIST OF TABLES

Table 2-1	Summary of Construction Details for Deep Soil Vapor Monitoring Wells
Table 3-1	Summary of Primary Target Compounds for Analyses Performed on Soil-Vapor Samples
Table 4-1	Summary of Soil-Vapor Results, First Long-Term Sampling Event

LIST OF FIGURES

Figure 1-1	Locations of Deep Soil Vapor Monitoring Wells Sampled
Figure 4-1	Carbon Tetrachloride Concentrations at Depth
Figure 4-2	Freon 113 Concentrations at Depth
Figure 4-3	Trichloroethene Concentrations at Depth
Figure 4-4	1,1-Dichloroethene Concentrations at Depth
Figure 4-5	Total VOC Concentrations at Depth
Figure 4-6	Representative Horizontal and Vertical Distribution of Total VOCs During the First Long-Term Soil Vapor Sampling Event

1.0 INTRODUCTION

Presented in this report are the results of the first long-term soil vapor sampling event completed as part of the long-term monitoring program being conducted at the NASA-Jet Propulsion Laboratory (JPL) for Operable Unit 2 (OU-2). The purpose of this program is to monitor the horizontal and vertical distributions of volatile organic compound (VOC) vapors in the vadose zone beneath the JPL site. From October 19 to October 28, 1998, Foster Wheeler Environmental Corporation (Foster Wheeler) personnel collected soil-vapor samples from the deep soil vapor monitoring well Nos. 25 through 28 and Nos. 32 through 39 at the locations shown in Figure 1-1.

All soil vapor samples collected during the event were analyzed for VOCs by Transglobal Environmental Geochemistry (TEG) in an on-site laboratory that is certified by the California Department of Health Services (CDHS). The analyses were performed in accordance with EPA Method 8010/8020 and the California Regional Water Quality Control Board, Los Angeles Region (RWQCB), protocols and guidance.

A description of how the 12 soil-vapor wells were constructed is presented in Section 2.0, and sampling procedures are described in Section 3.0. A summary of all VOCs detected during this first long-term soil vapor sampling event, including locations and depths, is contained in Section 4.0. The soil-vapor data evaluation report for all samples analyzed during this sampling event is located in Appendix A and summarized in Section 5.0. Cited references are listed in Section 6.0. Laboratory reports for all samples analyzed, along with chain-of-custody forms, are included in Appendix B. The initial three-point calibration data and the daily calibration-verification standards for each day's sampling are also included in this appendix.

2.0 SOIL VAPOR WELL CONSTRUCTION

A Roto-Sonic 150 drilling rig was used to install the deep soil vapor monitoring well Nos. 25 through 28 and Nos. 32 through 39. Sonic drilling techniques use a hydraulically driven head that imparts adjustable high frequency sinusoidal wave vibrations into the drill rods and core barrel, plus the outer casing, to create a cutting action at the bit face. When required, the drill rods and casing were rotated to evenly distribute the energy and the wear on the drill bit face. Continuous cores of subsurface materials were retrieved using a 10-foot-long, 6-inch-diameter core barrel. The 8-inch-diameter outer casing was advanced after the core barrel moved ahead to collect the core sample and then pulled out of the borehole. This procedure left a cavity so that cuttings that are "shaved" from the borehole wall as the outer casing is being advanced can be collected, thus minimizing soil compression and friction with the surrounding soil materials. These shaved cuttings were then removed from inside the casing, or from the open hole below the bottom of the casing, before the next length of core was collected. Borehole integrity was maintained by the casing after the drill string was pulled from the hole and during installation of the soil-vapor wells. Construction methods for installing the deep soil vapor monitoring well Nos. 25 through 28 and Nos. 32 through 39 were completed according to the procedures described below.

The total depth of each well was determined by the NASA Authorized Subcontractor Operable Unit Manager for OU-2 based on the depth where groundwater was encountered in the borehole or when perched groundwater was unexpectedly encountered.

The numbers of sampling tips (a maximum of ten per well) and the depths at which they were to be placed in each well were determined in the field based on soil lithologies, FID measurements made through the plastic bags enclosing the soil cores, and the final open-hole depths of the borehole.

Since either groundwater or perched groundwater was encountered in all of these soil-vapor wells and accumulated in the bottom of each borehole, 1/4-inch bentonite pellets were used to absorb the water and keep the bottom of the borehole in a dry condition as deeply as possible. Depending on the stabilized water levels, varying amounts (1.1 to 6.5 cubic feet) of pellets were added to the bottoms of the boreholes. One cubic foot of dry pellets raises the borehole bottom 3.5 feet (not allowing for expansion due to hydration). A weighted sounding line was used to evaluate the dryness of the borehole's bottom; if the retrieved weight was clean, it indicated that dry bentonite was at the bottom of the open borehole. The bottom was resounded when well installation started 1 to 2 hours later.

A hanger pipe, consisting of 10-foot lengths of 1-inch-diameter Schedule 80 PVC pipe was placed to the bottom of the borehole before the sampling tips and 1/8-inch-OD Nylaflow® tubing were installed. The interior of each hanger-pipe section was incrementally backfilled from bottom to top with Enviroplug® No. 16 bentonite granules and each increment was hydrated

with deionized water via 5/16-inch-diameter polyethylene tubing as each pipe section was being lowered into the soil-vapor well.

Because of only having the outer casing to stabilize the borehole walls, all sampling tips and attached Nylaflow® tubing had to be installed individually for each sampling depth. Sampling tips and tubing were weighted with 6-inch lengths of ¼-inch-diameter galvanized pipe and lowered to their field-determined depths and suspended from the top of the hanger pipe assembly.

The surface end of each Nylaflow® tubing was coded with either a single or double band of colored plastic tape to identify the sequential number and depths of each sampling tip placed in the soil-vapor well. A single band of yellow tape indicated the shallowest tip (tip No. 1) and a double band of black tape identified the deepest tip (tip No. 10). Single bands of green, red, blue, and black tape were used to sequentially identify tip Nos. 2 through 5, respectively, and double bands of yellow, green, red, and blue were used to identify the number and progressive depths of sampling tip Nos. 6 through 9, respectively.

Annular spaces around the sampling tips with attached Nylaflow® tubing and the borehole walls were backfilled with clean, kiln-dried RMC Lonestar® #3 sand and Enviroplug® No. 16 pure bentonite granules. A minimum of 1 foot of sand was placed below and above the sampling tip, and the intervals between the sand were backfilled with bentonite granules that were artificially hydrated with 2 to 3 gallons of potable water in the middle of each bentonite section. The remainder of the bentonite hydrated naturally by absorbing soil moisture from the surrounding formation. The annular space above the uppermost sampling tip was backfilled with bentonite granules (hydrated in place) to within 2 feet of the ground surface. Upon completion of backfilling, the hanger pipe was cut off approximately 4 to 6 inches below the surface of the surrounding surface area and the color-coded Nylaflow® tubings were sealed with air-tight, 1/8-inch Swagelok® tubing caps.

A 12-inch-diameter traffic box was installed at each soil-vapor well. Concrete was used to secure the traffic box in-place slightly above grade so as to direct surface runoff away from the traffic box's cover plate. After the soil vapor well assembly and traffic box were installed, the remaining open portion of the drillhole (1 to 2 feet) was filled with sand to complete the soil vapor well installation.

A summary of the construction details for the deep soil vapor monitoring wells is presented in Table 2-1.

3.0 SOIL VAPOR SAMPLING PROCEDURES

During October 1998, soil-vapor samples were collected and analyzed from deep soil vapor monitoring well Nos. 25 through 28 and Nos. 32 through 39. One hundred and eighteen depth-specific vapor samples, including 19 collocated duplicate samples were collected and analyzed for 25 primary target VOC compounds in accordance with the RWQCB (1997) guidance.

Soil-vapor samples were withdrawn from the soil through the sampling tips and 1/8-inch-outside diameter (OD) Nylaflow® tubing using calibrated, gas-tight, 60-cc sterile syringes fitted with a three-way on-off valve. Prior to collecting the soil-vapor sample, four volumes of the length of the tubing were purged to flush the tubing and fill it with in-situ soil vapor. Since each foot of tubing has an internal volume of 1 cc, the total volume purged was easily measured with the calibrated syringes. Following purging, a 60-cc soil-vapor sample was collected in the syringe, the valve turned to the off position, and transferred immediately to the on-site mobile laboratory for analysis. During sampling, neither water vapor nor condensation was observed in the transparent sampling syringes. Because the purge and sample volumes were small, a vacuum pump was not required to evacuate the tubing or to collect a soil-vapor sample. To demonstrate reproducibility of results, a duplicate soil-vapor sample was collected and analyzed after every five environmental samples.

Samples collected were analyzed on-site in a mobile laboratory certified (Certification No. 1745) by the CDHS to perform analyses by EPA Methods 8010 and 8020 for the parameters listed in Table 3-1. The time between sample collection and analysis was, at most, only a few minutes.

4.0 ANALYTICAL RESULTS

During the RI for OU-2, deep soil vapor well Nos. 25 through 28 were sampled three times and well Nos. 32 through 39 were sampled twice. Results of those sampling events indicated that four VOCs were more frequently detected in soil-vapor samples at elevated concentrations to other VOCs. These four VOCs are carbon tetrachloride (CCl₄), 1,1,2-trichloro-1,2,2-trifluroroethane (Freon 113), trichloroethene (TCE), and 1,1-dichloroethene (1,1-TCE). Carbon tetrachloride and Freon 113 were detected in most soil-vapor samples where VOCs were present and often the only VOCs detected; CCl₄ was usually detected at higher concentrations than Freon 113. The frequency of detection, concentrations, land horizontal and vertical distribution of these four major VOCs are thoroughly discussed and presented in the OU-2 RI report (FWENC, 1999b).

A soil-vapor extraction (SVE) pilot test (VE-1) was initiated in April 1998, at the location shown in Figure 4-1, prior to the last two RI soil vapor sampling events (May and June 1998), and was terminated in June 1998. Results of the May and June 1998 RI sampling events indicated that VOC concentrations had been somewhat reduced in nearby deep soil vapor well Nos. 25, 26, 27, and 28, but concentrations detected in well Nos. 32 through 39 were relatively the same as detected previously.

The VOCs most frequently detected during this first long-term sampling event were, as in the past, CCl₄, Freon 113, TCE, and 1,1-TCE. For the most part, concentrations measured during this event are very similar to those measured in all 12 monitoring wells during the May and June 1998 sampling events, except for Freon 113, which was detected at higher average concentrations in all wells. Only one other VOC, chloroform, was detected in a single soil-vapor well (No. 36) during this sampling event at concentrations slightly above the analytical detection limit of 1.0 microgram per liter of vapor (μg/L-vapor). A summary of the analytical results for all samples collected during this sampling event are presented in Table 4-1, and the laboratory reports for each day's sampling are presented in Appendix B-1. Chain-of-custody forms are included in Appendix B-2.

Locations of detections with depth for CCl₄, Freon 113, TCE, and 1,1-DCE are shown in Figures 4-1, 4-2, 4-3, and 4-4, respectively. Total VOC concentrations with depth are presented in Figure 4-5, and the estimated horizontal and vertical distribution of total VOCs along a section through the north-central part of the site (where VOC concentrations are the highest) is presented in Figure 4-6. Groundwater elevations shown in Figure 4-6 are based on information contained in the groundwater monitoring report for October-November 1998 (FWENC, 1999a).

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

Presented in this section is a brief summary of the quality assurance and quality control (QA/QC) procedures followed during the first long-term soil vapor sampling event. A more thorough discussion on the QA/QC processes and data evaluation are presented in Appendix A, Soil Vapor Data Evaluation Report.

All sample analyses were performed using an external, three-point standard calibration method (see Appendix B3). For more target analytes, both detectors on the gas chromatograph (GC) were calibrated over a range equivalent to 2 to 100 µg/L analyte in soil vapor. Analytical system performance was verified at the beginning of each analytical day with an "opening standard" and a "closing standard" after the last environmental sample analysis for the day. A "continuing standard" was analyzed after the tenth environmental sample run that day. If ten or fewer samples were analyzed during the day, the closing standard substituted for the continuing standard. Results of the daily opening, closing, and continuing (if applicable) standards are presented in Appendix B4.

During each analytical day, the environmental sample analyses were bracketed by check standards which verified acceptable system performance for the analytes listed in the daily calibration data summary tables (Appendix B4). Response factors (RF) calculated from the opening standard results were within ±15 percent of the mean calibration factors calculated from initial calibration results. Results for closing standards and continuing standards were within ±20 percent of initial calibration results. Therefore, no data were qualified because of standardization problems or instrumental drift. Percent differences between analyte-specific response factors were always within applicable control limits.

Field blanks of ambient air from inside the field laboratory trailer were analyzed immediately after the opening verification standard and were clean in all cases. No matrix spikes or laboratory replicates were required, although some of the samples were reanalyzed at smaller injection volumes so that the instrument response (in terms of area counts) fell within the working calibration range of the GC.

Three surrogate compounds (1,4-difluorobenzene, chlorobenzene, and 4-bromofluorobenzene) were injected into the GC along with the environmental samples as a QA/QC check on recovery limits. In accordance with RWQCB (1997) protocols, surrogate recoveries should be in the range of 75 to 130 percent. All surrogate recoveries obtained during this sampling event satisfied this criteria by a wide margin, usually within a recovery range of 85 to 115 percent.

No sample analysis data obtained during this sampling event were rejected as unusuable although several sample results were not within the working calibration range of the GC. However, these extrapolated results still provide very useful information. Overall, the assessment of soil vapor and corresponding control sample data indicate that data quality objectives were achieved in terms of precision, accuracy, representativeness, comparability, and completeness for all analytes sampled.

6.0 REFERENCES

- 1. FWENC (Foster Wheeler Environmental Corporation). 1999a. Quarterly Groundwater Monitoring Results, October-November 1998. March.
- 2. FWENC (Foster Wheeler Environmental Corporation). 1999b. Final Remedial Investigation Report for Operable Unit 2: Potential On-Site Contaminant Source Areas. Volume 1. November.
- 3. RWQCB (California Regional Water Quality Control Board, Los Angeles Region). 1997. *Interim Guidance for Active Soil Gas Investigation*. February 25.

TABLES

TABLE 2-1
SUMMARY OF CONSTRUCTION DETAILS
FOR DEEP SOIL VAPOR MONITORING WELLS

Soil-Vapor Well Number	Date Drilling Completed	Date Vapor Well Installed	Drilling Method	Boring Depth (ft bgs)	Sampling Tip Number	Depth to Sampling Tip (ft bgs)	Elevation of Ground Surface (ft amsl)	Elevation of Soil Vapor Sampling Tip (ft amsl)
25	3/31/97	3/31/97	Sonic	202	1	20	1199.6	1179.6
					2	40		1159.6
					3	60		1139.6
					4	85		1114.6
					5	100		1099.6
					6	120		1079.6
					7	145		1054.6
					8	165		1034.6
					9	180		1019.6
					10	190		1009.6
26 3/	3/27/97	3/28/97	Sonic	206	1	20	1201.8	1181.8
		•			2	35		1166.8
					3	55		1146.8
					4	80		1121.8
					5	100		1101.8
					6	115		1086.8
					7	140		1061.8
					8	160		1041.8
					9	180		1021.8
					10	195		1006.8
27	3/18/97	3/18/97	Sonic	214	1	20	1214.2	1194.2
					2	35		1179.2
					3	60		1154.2
					4	85		1129.2
					5	100		1114.2
					6	120		1094.2
					7	140		1074.2
					8	160		1054.2
					9	180		1034.2
					10	205	•	1009.2

TABLE 2-1
SUMMARY OF CONSTRUCTION DETAILS
FOR DEEP SOIL VAPOR MONITORING WELLS

Soil-Vapor Well Number	Date Drilling Completed	Date Vapor Well Installed	Drilling Method	Boring Depth (ft bgs)	Sampling Tip Number	Depth to Sampling Tip (ft bgs)	Elevation of Ground Surface (ft amsl)	Elevation of Soil Vapor Sampling Tip (ft amsl)
28	3/13/97	3/14/97	Sonic	179	1	20	1176.7	1156.7
					2	45		1131.7
					3	65		. 1111.7
					4	80		1096.7
					5	105		1071.7
					6	120		1056.7
					7	140		1036.7
					8	160		1016.7
32 3/29/98	3/29/98	3/29/98	Sonic	210	. 1	25	1206.6	1181.6
					2	40		1166.6
					3	55		1151.6
					4	70		1136.6
					5	90		1116.6
					6	115		1091.6
					7	135		1071.6
					8	155		1051.6
					9	180		1026.6
					10	195		1011.6
33	3/31/98	4/1/98	Sonic	213	1	20	1214.0	1194.0
					2	40		1174.0
					3	60		1154.0
					4	85	•	1129.0
					5	105		1109.0
					6	120		1094.0
					7	140		1074.0
					8	160		1054.0
					9	180		1034.0
					10	200		1014.0

TABLE 2-1
SUMMARY OF CONSTRUCTION DETAILS
FOR DEEP SOIL VAPOR MONITORING WELLS

Soil-Vapor Well Number	Date Drilling Completed	Date Vapor Well Installed	Drilling Method	Boring Depth (ft bgs)	Sampling Tip Number	Depth to Sampling Tip (ft bgs)	Elevation of Ground Surface (ft amsl)	Elevation of Soil Vapor Sampling Tip (ft amsl)
34	4/8/98	4/8/98	Sonic	135	1	20	1164.3	1144.3
					2	35		1129.3
					3	50		1114.3
					4	65		1099.3
					5	80		1084.3
					6	95		1069.3
					7	108		1056.3
					8	118		1046.3
35	4/14/98	4/14/98	Sonic	162.5	1	20	1183.2	1163.2
					2	35		1148.2
					3	50		1133.2
					4	60		1123.2
					5	80		1103.2
					6	95		1088.2
					7	110		1073.2
					8	125		1058.2
					9	140		1043.2
					10	155		1028.2
36	3/27/98	3/27/98	Sonic	117	1 .	20	1232.8	1212.8
					2	35		1197.8
					3	55		1177.8
					4	75		1157.8
					5	92		1140.8
37	4/7/98	4/7/98	Sonic	193	1	25	1195.7	1170.7
					2	40		1155.7
					3	60		1135.7
					4	80		1115.7
					5	100		1095.7
					6	120		1075.7
					7	140		1055.7

TABLE 2-1
SUMMARY OF CONSTRUCTION DETAILS
FOR DEEP SOIL VAPOR MONITORING WELLS

Soil-Vapor Well Number	Date Drilling Completed	Date Vapor Well Installed	Drilling Method	Boring Depth (ft bgs)	Sampling Tip Number	Depth to Sampling Tip (ft bgs)	Elevation of Ground Surface (ft amsl)	Elevation of Soil Vapor Sampling Tip (ft amsl)
					8	155		1040.7
					9	170		1025.7
					10	185		1010.7
38	4/15/98	4/15/98	Sonic	178.5	1	25	1185.6	1160.6
					2	45		1140.6
					3	65		1120.6
					4	80		1105.6
					5	95		1090.6
					6	110		1075.6
					7	125		1060.6
					8	140		1045.6
					9	155		1030.6
					10	170		1015.6
39	4/17/98	4/17/98	Sonic	138	1	20	1144.1	1124.1
					2	35		1109.1
					3	50		1094.1
•					4	70		1074.1
					5	85		1059.1
					6	100		1044.1
					7	110		1034.1
					8	120		1024.1
					9	130		1014.1

Notes:

amsi - Above mean sea level.

bgs - Below ground surface.

ft - Feet.

TABLE 3-1
SUMMARY OF PRIMARY TARGET COMPOUNDS
FOR ANALYSES PERFORMED ON SOIL-VAPOR SAMPLES

Parameter	Method	Container	Maximum Holding Time	Detection Limits
Volatile Organic Compounds	8010/8020	Syringe	15 minutes	
Benzene				1.0 μg/L
Vinyl chloride				1.0 μg/L
Carbon tetrachloride				1.0 μg/L
1,2-Dichloroethane				1.0 μg/L
Trichloroethene	•			1.0 μg/L
1,1-Dichloroethene				1.0 μg/L
1,1,1-Trichloroethane				1.0 μg/L
Bromomethane				1.0 μg/L
Chloroethane				1.0 μg/L
Chloroform				1.0 μg/L
trans-1,2-Dichloroethene				1.0 μg/L
cis-1,2-Dichloroethene				1.0 μg/L
Dichloromethane				1.0 μg/L
1,1-Dichloroethane				1.0 μg/L
Ethylbenzene				1.0 μg/L
1,1,2-Trichloroethane				1.0 μg/L
1,1,1,2-Tetrachloroethane				1.0 μ g/L
1,1,2,2-Tetrachloroethane				1.0 μg/L
Tetrachloroethene				1.0 μ g /L
Toluene				1.0 μg/L
m,p-Xylenes				1.0 μg/L
o-Xylene				1.0 μg/L
Trichlorofluoromethane (Freon 11)				1.0 μg/L
Dichlorodifluoromethane (Freon 12)				1.0 μg/L
Trichlorotrifluoroethane (Freon 113)				1.0 μg/L

TABLE 4-1

(Concentrations in μ g/L-vapor)

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
25	20	10/19/98	VPSV-523	ND	ND ND	ND	ND	<u> </u>
25 25	40	10/19/98	VPSV-523	ND	ND	1	1	ND
25	60	NS	NS	P	P	ND P	ND	ND
25	85	10/19/98	VPSV-525	83	ND	ND	P	P
25	100	NS	NS	65 P	I P	P P	ND P	ND
25	120	10/19/98	VPSV-526	119	ND	1	1 '	P
25	145	10/19/98	VPSV-520 VPSV-527	286 J	152 J	ND	ND	ND
25 25	145	10/19/98	VPSV-528(DUP)	285		ND	ND ND	ND
25 25	165	10/19/98	VPSV-526(DUP)	205 217 J	147	ND	ND	ND
25 25	180	10/19/98	VPSV-529 VPSV-530	118	233 J 133	ND	ND	ND
25	190	10/19/98	VPSV-530 VPSV-531	124	71	ND	ND	ND
26	20	NS	NS	P 124	P	1.6	ND	ND
26	20 35	10/19/98	VPSV-532	1	· ·	P	P	Р
26	55	10/19/98	VPSV-532 VPSV-533	ND ND	ND ND	ND	ND	ND
26	55	10/19/98	VPSV-533 VPSV-534(DUP)	ND ND	ND ND	ND ND	3.9	ND
26	80	10/19/98	VPSV-535	74	ł	ND 4.4	4.2	ND
26	100	NS	NS	74 P	ND P	4.4	6.7	ND
26	115	10/19/98	VPSV-536	153 J	l ·	P	Р	P
26	140	10/19/98	VPSV-536 VPSV-537	167 J	ND	1.2	3.0	ND
26	160	10/19/96	VPSV-537 VPSV-538	81	7.9	ND	1.6	ND
26	180	10/20/98	VPSV-536 VPSV-539	ľ	ND ND	ND ND	ND	ND
26	195	10/20/98	VPSV-539 VPSV-540	72 83	ND ND	ND	ND	ND
26	195	10/20/98			ND	1.4	ND	ND
27	20		VPSV-541(DUP)	95	ND ND	1.3	ND	ND
		10/20/98	VPSV-542	ND	ND	ND	ND	ND
27	35	NS 40/00/00	NS VDOV 540	W	W	W	W	W
27	60	10/20/98	VPSV-543	ND	49	ND	ND	ND
27	85	10/20/98	VPSV-544	7.4	61	ND	ND	ND
27	100	10/20/98	VPSV-545	193 J	188 J	ND	ND	ND
27	100	10/20/98	VPSV-546(DUP)	203	169	ND	ND	ND
27	120	10/20/98	VPSV-547	110	215	ND	ND	ND

TABLE 4-1

(Concentrations in µg/L-vapor)

Soil Vapor Well	Depth		Sample					
Number	(ft bgs)	Date	Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
27	140	10/20/98	VPSV-548	161	268	1.2	ND	ND
27	160	10/20/98	VPSV-549	189	212	ND	ND	ND
27	180	10/20/98	VPSV-550	155	265	ND	ND	ND
27	205	10/20/98	VPSV-551	413 J	133	ND	ND	ND
27	205	10/20/98	VPSV-552(DUP)	446	130	ND	ND	ND
28	20	10/21/98	VPSV-565	ND	ND	ND	ND	ND
28	45	10/21/98	VPSV-566	ND	ND	ND	ND	ND
28	65	NS	NS	P	Р	P	Р	l P
28	80	10/21/98	VPSV-567	22	ND	ND	ND	ND
28	105	10/21/98	VPSV-568	210 J	127	ND	ND	ND
28	120	10/21/98	VPSV-569	438 J	429 J	ND	ND	ND
28	120	10/21/98	VPSV-570(DUP)	451 J	403 J	ND	ND	ND
28	140	NS	NS	Р	P	Р	Р	Р
28	160	NS	NS	P	Р	Р	Р	Р
32	25	10/26/98	VPSV-597	ND	ND	ND	ND	ND
32	40	10/26/98	VPSV-598	ND	ND	ND	ND	ND
32	55	10/26/98	VPSV-599	ND	ND	ND	ND	ND
32	55	10/26/98	VPSV-600(DUP)	ND	ND	ND	ND	ND
32	70	10/26/98	VPSV-601	ND	ND	ND	ND	ND
32	90	10/26/98	VPSV-602	ND	ND	ND	ND	ND
32	115	NS	NS NS	P	P	Р	Р	P
32	135	10/26/98	VPSV-603	ND	ND	ND	ND	ND
32	155	10/26/98	VPSV-604	14	193 J	ND	ND	ND
32	180	10/26/98	VPSV-605	110	144	4.9	ND	ND
32	180	10/26/98	VPSV-606(DUP)	125	138	6.4	ND	ND
32	195	10/26/98	VPSV-607	88	193 J	3.2	ND	ND
33	20	10/21/98	VPSV-553	ND	ND	ND	ND	ND
33	40	10/21/98	VPSV-554	12	87	6.3	25	ND
33	60	10/21/98	VPSV-555	89	1.3	4.3	12	ND
33	85	10/21/98	VPSV-556	140	ND	2.8	8.3	ND

TABLE 4-1

(Concentrations in $\mu g/L$ -vapor)

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI ₄	-Freon 113	TCE	1,1-DCE	Chloroform
33	105	10/21/98	VPSV-557	191 J	ND	2.4	6.8	ND
33	105	10/21/98	VPSV-558(DUP)	204	ND	2.5	7.4	ND
33	120	10/21/98	VPSV-559	141	ND	2.2	6.4	ND
33	140	10/21/98	VPSV-560	179 J	ND	ND	7.9	ND
33	160	10/21/98	VPSV-561	94	ND	ND	8.6	ND
33	180	10/21/98	VPSV-562	67	ND	ND	6.8	ND
33	200	10/21/98	VPSV-563	78	ND	1.3	5.9	ND
33	200	10/21/98	VPSV-564(DUP)	77	ND	1.1	5.8	ND
34	20	10/22/98	VPSV-583	ND	ND	ND	ND	ND
34	35	10/22/98	VPSV-584	ND	ND	ND	ND	ND
34	50	10/22/98	VPSV-585	ND	ND	ND	ND	ND
34	60	10/22/98	VPSV-586	4.5	ND	ND	ND	ND
34	80	10/22/98	VPSV-587	6.1	ND	ND	ND	ND
34	80	10/22/98	VPSV-588(DUP)	6.0	ND	ND	ND	ND
34	95	10/23/98	VPSV-589	28	ND	ND I	ND	ND
34	108	10/23/98	VPSV-590	157 J	62	ND	ND	ND
34	118	10/23/98	VPSV-591	154 J	82	ND	ND	ND
35	20	10/22/98	VPSV-571	ND	ND	ND	ND	ND
35	35	10/22/98	VPSV-572	ND	ND	ND	ND	ND
35	50	10/22/98	VPSV-573	ND	ND	ND	ND	ND
35	60	10/22/98	VPSV-574	ND	ND	ND	ND	ND
35	80	10/22/98	VPSV-575	18	36	ND	ND	ND
35	80	10/22/98	VPSV-576(DUP)	20	37	ND	ND	ND
35	95	10/22/98	VPSV-577	45	48	ND	ND	ND
35	110	10/22/98	VPSV-578	65	47	ND	ND	ND
35	125	10/22/98	VPSV-579	74	54	ND	ND	ND
35	140	10/22/98	VPSV-580	125	64	ND	ND	ND
35	155	10/22/98	VPSV-581	59	61	2.4	ND	ND
35	155	10/22/98	VPSV-582(DUP)	63	68	2.8	ND	ND

TABLE 4-1

(Concentrations in µg/L-vapor)

Soil Vapor Well	Depth		Sample					
Number	(ft bgs)	Date	Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
36	20	NS	NS	Р	Р	Р	Р	P
36	35	10/23/98	VPSV-592	9.2	ND	ND	ND	ND
36	55	10/23/98	VPSV-593	17	ND	ND	ND	1.1
36	55	10/23/98	VPSV-594(DUP)	16	ND	ND	ND	1.1
36	75	10/23/98	VPSV-595	22	31	ND	ND	3.8
36	92	10/23/98	VPSV-596	20	29	ND .	ND	4.0
37	25	10/26/98	VPSV-608	ND	ND	ND	ND	ND
37	40	10/26/98	VPSV-609	24	ND	1.2	ND	ND
37	60	10/26/98	VPSV-610	43	ND	ND	ND	ND
37	80	10/26/98	VPSV-611	64	51	2.3	ND	ND
37	80	10/26/98	VPSV-612(DUP)	60	48	2.4	ND	ND
37	100	10/26/98	VPSV-613	62	57	3.5	ND	ND
37	120	10/27/98	VPSV-614	32	ND	6.1	ND	ND
37	140	10/27/98	VPSV-615	30	37	4.5	ND	ND
37	155	10/27/98	VPSV-616	26	47	2.3	ND	ND
.37	170	10/27/98	VPSV-617	23	38	3.0	ND	ND
37	185	10/27/98	VPSV-618	12	6.5	2.2	ND	ND
37	185	10/27/98	VPSV-619(DUP)	12	6.8	1.7	ND	ND
38	25	10/27/98	VPSV-620	ND	ND	ND	ND	ND
38	45	10/27/98	VPSV-621	5.6	ND	ND	ND	ND
38	65	10/27/98	VPSV-622	15	57	- 2.2	ND	ND
38	80	10/27/98	VPSV-623	11	74	1.6	ND	ND
38	80	10/27/98	VPSV-624(DUP)	15	56	2.1	ND	ND
38	95	NS	NS	W	W	W	W	w
38	110	10/27/98	VPSV-625	13	43	1.4	ND	ND
38	125	10/27/98	VPSV-626	18	81	1.8	ND	ND
38	140	10/27/98	VPSV-627	18	67	1.9	ND	ND
38	155	10/27/98	VPSV-628	17	75	1.8	ND	ND
38	170	10/27/98	VPSV-629	22	103	3.0	ND	ND
38	170	10/27/98	VPSV-630(DUP)	24	112	3.4	ND	ND

TABLE 4-1

SUMMARY OF SOIL-VAPOR RESULTS FIRST LONG-TERM SAMPLING EVENT

(Concentrations in µg/L-vapor)

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI₄	Freon 113	TCE	1,1-DCE	Chloroform
39	20	10/28/98	VPSV-631	ND	ND	ND	ND	ND
39	35	10/28/98	VPSV-632	ND	ND	ND	ND	ND
39	50	10/28/98	VPSV-633	ND	ND	ND	ND	ND
39	70	10/28/98	VPSV-634	ND	ND	ND	ND	ND
39	85	10/28/98	VPSV-635	3.7	66	1.5	ND	ND
39	85	10/28/98	VPSV-636(DUP)	3.9	78	1.6	ND	ND
39	100	10/28/98	VPSV-637	7.9	77	3.3	ND	ND
39	110	10/28/98	VPSV-638	9.8	67	4.7	ND	ND
39	120	10/28/98	VPSV-639	6.5	50	10	ND	ND
39	130	10/28/98	VPSV-640	6.2	50	15	ND	ND

Notes:

bgs - Below ground surface.

DUP - Duplicate samples.

J - Estimated concentration; result exceeded calibration range.

ND - Not detected. NS - Not sampled.

P - Sampling port plugged.

W - Sampling port inundated with water.

FIGURES

Explanation

- 25- Soil Vapor Sample Point and Depth
- 49 Concentrations of Total VOCs $\mu g/L-Vapor)$
- Non-Detect @ Laboratory Detection Limit of 1.0 μ g/L-Vapor
- Sample Port Plugged; No Sample Collected
- Sample Port Waterlogged; No Sample Collected
- VOCs Volatile Organic Compounds

Contours:

- Intervals in 100 μg/L—Vapor.
 Queried where spatial control is lacking.

Note:

Location of cross—section is shown on Figures 4—1 through 4—5.

FIGURE 4-6

REPRESENTATIVE HORIZONTAL AND VERTICAL DISTRIBUTION OF TOTAL VOCS DURING THE FIRST LONG-TERM SOIL VAPOR SAMPLING EVENT OCTOBER, 1998

Jet Propulsion Laboratory Pasadena, California

FOSTER WHEELER ENVIRONMENTAL CORPORATION

APPENDIX A SOIL VAPOR DATA EVALUATION REPORT FIRST LONG-TERM SAMPLING EVENT

SOIL VAPOR DATA EVALUATION REPORT FIRST LONG-TERM SAMPLING EVENT

I. INTRODUCTION

Summarized in this report is Foster Wheeler Environmental's review of the analytical data package generated from gas chromatographic analyses of soil vapor samples collected during October 1998 from the JPL site, Pasadena, California. These samples represent the initial round of the long-term soil vapor monitoring program. On-site analysis for volatile organic compounds (VOCs) was performed by Transglobal Environmental Geochemistry (TEG) in their CDHS-certified mobile laboratory by chemist Allen Glover with internal data review conducted by Dr. Blayne Hartman. The final data packages were carefully reviewed by Foster Wheeler Environmental's Principal Scientist/Project Chemist who prepared this summary report.

During the period from October 19 to October 28, 1998, 12 Operable Unit 2 (OU-2) deep soil vapor wells (Well Nos. 25 through 28 and Nos. 32 through 39) were sampled. One hundred and eighteen depth-specific vapor samples, including 19 collocated field duplicates, were successfully collected. These samples, along with eight ambient-air field blanks were immediately analyzed for a predetermined list of target VOCs. The time between sample collection and analysis was only a few minutes.

Listed in the attached Table 1 is a summary of the laboratory results for all samples analyzed during this round of long-term soil vapor monitoring. Also included in this table are the corresponding soil vapor well numbers and depths from which each identified vapor sample was collected. This table should provide the reader with sufficient information to determine exactly where each sample was obtained, and also identify the collocated field duplicate samples (DUP).

II. GUIDELINES USED FOR THIS REVIEW

Soil vapor data review was performed to assess and evaluate adherence to the QA/QC and Reporting Requirements for Soil Gas Investigation, protocols established by the California Regional Water Quality Control Board - Los Angeles Region, and general quality control requirements and good laboratory practices contained in the current reference methods for this analysis (8000B & 8021) published in Test Methods for Evaluating Solid Wastes - Physical/Chemical Methods, SW-846, Office of Solid Waste and Emergency Response, USEPA, Washington, DC, 3rd Edition, September 1986 (including Update IIB, January 1995).

There were some key areas that could not be evaluated because no data were supplied, and there are some constraints imposed by the nature of any vapor matrix that limit the types of control samples that can be run. These areas, and their potential impact on data reliability, are discussed later in the report. As had been requested, data tables that summarized the laboratory's external calibration and internal control sample results were included in this package. In addition, the package contained copies of individual chromatograms.

III. CHROMATOGRAPHIC PERFORMANCE

All sample analyses were performed using an external, three-point standard calibration method. For most target analytes, both detectors on the Shimadzu gas chromatograph (GC) were calibrated over a range equivalent to 2 to 100 μ g/L analyte in soil vapor. Analytical system performance was checked at the beginning of each analytical day with an "opening standard," a final "closing standard." Usually, a "continuing standard," prepared from a different batch or chemical lot number than the parent standard used to make up the daily opening and closing check standards, was analyzed after the tenth environmental sample run that day. All check standards were made up to the mid-point calibration concentration (equivalent to 20 μ g/L vapor). Because calibration of the analytical system was never altered, updated, or otherwise adjusted based on these results, the term "continuing calibration" is misleading and should not be used when referring to these control samples.

During each analytical day, the environmental sample analyses were bracketed by check standards which verified acceptable system performance for the limited number of analytes listed in the QA/QC - Calibration Data Summary Tables. Response factors (RF) calculated from the opening standard results were within ±15 percent of the mean calibration factors calculated from initial calibration results. Closing standards and LCS results were within ±20 percent of initial calibration results. In this package, no data were qualified because of standardization problems or instrumental drift. Percent differences between analyte-specific response factors were always within applicable control limits.

Field blanks of ambient air from inside the field laboratory were analyzed immediately after the opening verification standard and were clean in all cases. No matrix spikes or laboratory replicates were required in these data packages, although some of the samples were reanalyzed at smaller injection volumes so that the instrument response (in terms of area counts) fell within the working calibration range of the GC.

In qualitative chromatographic terms such as peak shape, compound separation, stability of instrumental response, baseline appearance, drift and sensitivity, the quality of the chromatograms in these data packages compared favorably with the general criteria for single laboratory performance as published in the method references.

IV. REQUIRED INSTRUMENT QC

Based on general assessment criteria for GC analysis with non-MS detectors, RWQCB guidelines, and requirements in SW-846 - Method 8021, TEG's data packages were evaluated as follows:

• Linearity of Initial Calibration Curve: For each target analyte, the percent relative standard deviation (%RSD) among response factors calculated from the three calibration standards was less than 20 percent, indicative of a linear relationship. In

- addition, based on the three-point initial calibration data summary table provided, linear correlation coefficients were greater than 0.995 for all target analytes.
- Retention Time (RT) Windows: Calculation of RT windows is evidently not addressed under RWQCB guidelines. Retention time windows appeared stable and consistent. How acceptable ranges for RT windows were established, and the magnitude of temporal variation allowed was not explained in the data package.
- Establishment and Verification of Calibration Factors: Based on initial calibration data, RF values were correctly calculated. Verification checks indicated a stable analytical system.

V. MATRIX SPIKE AND LABORATORY CONTROL SAMPLES

The mixed-gas matrix collected from vapor monitoring wells was assumed not significantly to affect method performance in terms of detection limits, precision, and accuracy. No matrix spike data were reported to verify this assumption and no lab replicates were run for internal lab precision assessment. The lack of this type of control data means that the variability and bias of the results attributably solely to the analytical and reporting systems at the laboratory (handling and storage effects are assumed to be negligible) cannot be quantified. However, data on 19 pairs of field duplicates were generated, and although the variability introduced in the process of sample extraction and collection is estimated to be an order of magnitude greater than analytical and reporting variability within the laboratory, some general conclusions about the variability of the data set as a whole can be drawn. For that purpose, the mean relative percent difference (RPD) between individual field duplicate data pairs with detectable concentrations of the four most commonly detected target analytes, along with other statistical parameters, are summarized in the table below.

	STATISTICAL PARAMETERS - Field Duplicates							
:	Average RPD	Standard Deviation	Variance σ ²	Relative Error σ÷RPD				
Carbon Tetrachloride	7.4 %	7.2 x 10 ⁻²	5.2×10^{-3}	0.97				
Freon 113	9.2 %	7.4 x 10 ⁻²	5.4×10^{-3}	0.80				
Trichloroethene	14.6 %	9.2 x 10 ⁻²	8.5 x 10 ⁻³	0.63				
1,1-Dichloroethene	5.8 %	3.6 x 10 ⁻²	1.3 x 10 ⁻³	0.62				

Average RPDs and other statistical parameters compare favorably with the statistical data calculated from previous soil vapor analyses as reported by TEG. With average RPDs consistently below 15 percent, there is good general agreement between duplicate pairs and good consistency between sampling events. This suggests that a reproducibly consistent field sampling procedure is being properly implemented. With 62 to 97 percent relative error, variability within the duplicate data set is not considered excessive for this type of field sampling. It is suspected that this variability is probably not introduced by the laboratory's analytical system, but by the

field collection technique which varies the amount of vapor purged from a well as a function of sampling depth, and by interactions between the inside surfaces of the sampling apparatus, entrained moisture, and the vapor phase target analytes.

VI. SURROGATE RECOVERIES

An essential requirement of the GC method is that each laboratory calculate in-house performance criteria for evaluating recovery of surrogate compounds. In this case, 1,4-difluorobenzene, chlorobenzene, and 4-bromofluorobenzene were used as surrogates. However, the laboratory did not present any historical performance data with which to establish acceptable in-house surrogate recovery limits. Upper and lower warning and control limit calculations should be completed and included in future data packages. Lacking such data, a range of 70 to 130 percent was applied in accordance with RWQCB guidance. This has been the standard by which previous soil data packages were judged. The current data package satisfied this criterion by a wide margin. Surrogate recoveries fell more typically within a recovery range of 85 to 115 percent.

VII. PERFORMANCE CRITERIA

The detection limit was reported at 1 μ g/L-vapor for all 25 target compounds. Data to support and confirm this limit was not provided.

VIII. SUMMARY OF FINDINGS AND RECOMMENDATIONS

- A. The following general comments are offered relative to these data packages:
 - 1. It is requested that all future data reporting packages include a copy of the raw GC data from the initial three-point instrument calibration curve(s). Although the published SW-846 method calls for a minimum of five calibration points, the RWQCB protocols allow for this modification to the standard method.
 - 2. Calibration of all target analytes for a particular detector should be performed together, simultaneously, or over the same time period (i.e., calibration of all Hall detector analytes should be performed on the same day <u>under the same chromatographic conditions</u>). In this case for example, Freon 113 (one of the Hall detector analytes) was initially calibrated on October 7, 1998, while another calibration curve generated on October 18, 1998, was used for quantifying chloromethane and several other target compounds that are also Hall detector analytes.
 - 3. The lab should establish and monitor trends in their own specific control limits for surrogate recoveries.

- 4. System blanks should occasionally be run immediately after samples with high analyte concentrations (e.g., greater than 200 μ g/L) to demonstrate that no analyte carry-over is occurring and the system is free of false positive signals.
- 5. "QA/QC Calibration Data" summary tables must include all organic compounds that have been detected on site. Carbon tetrachloride and chloroform should be added to the lab's standard mix for preparing calibration verification and QC check standards.
- B. The following data qualifications should be made when reporting these results:

Based upon a review of the initial calibration summary from data generated on October 7, 1998, and October 18, 1998, it appears as though detectable analyte concentrations were reported for some samples in which the uncorrected result was greater than 150 percent of the highest calibration standard (100 μ g/L in most cases). This situation occurred for 13 soil vapor results. Any analyte whose on-column concentration exceeded the highest calibration standard by more than 50 percent, should have been reanalyzed using a smaller aliquot so that the raw instrumental result fell within the working calibration range (typically between 1 and 150 μ g/L). This was not done consistently. The lab should not report extrapolated data results without qualification. Therefore, the following results should be qualified "J" to indicate an estimated value:

Carbon Tetrachloride	VPSV-527-145, VPSV-529-165, VPSV-536-115, VPSV-537-140, VPSV-545,100, VPSV-551-205, VPSV-557-105, VPSV-560-140, VPSV-568-105, VPSV-569-120, VPSV-570-120, VPSV-590-108,
	VPSV-591-118.
Freon 113	VPSV-527-145, VPSV-529-165, VPSV-545-100, VPSV-569-120, VPSV-570-120, VPSV-604-155, VPSV-607-195.

There was one instance in which a sample result was over the working calibration range, but the corresponding field duplicate injection volume had been reduced so that the duplicate result fell within the calibration range. These results agreed to within 7 percent RPD. Therefore, in this case, the original result was allowed to stand unqualified.

In general, there was excellent qualitative agreement in the patterns of groups of compounds (or absence thereof) between field duplicate pairs. When one sample was clean, the other showed no detectable contamination. When target contaminants were detected, identical patterns of compounds were seen in both samples. Strong agreement between patterns indicates a high degree of precision in the identification of specific target analytes by the laboratory and also demonstrates that field sampling procedures, equipment design, and materials of construction are not introducing significant bias.

TABLE 1

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
25	20	10/19/98	VPSV-523	ND	ND	ND	ND	ND
25	40 -	10/19/98	VPSV-524	ND	ND	ND	ND	ND
25	60	NS	NS	P	P	P	P	P
25	85	10/19/98	VPSV-525	83	ND	ND	ND	, ND
25	100	NS	NS	P	P	P	P	P
25	120	10/19/98	VPSV-526	119	ND ND	ND	ND	ND
25	145	10/19/98	VPSV-527	286 J	152 J	ND ND	ND	ND ND
25	145	10/19/98	VPSV-528(DUP)	285	147	ND	ND	ND ND
25	165	10/19/98	VPSV-529	217 J	233 J	ND	ND	ND
25	180	10/19/98	VPSV-530	118	133	ND	ND	ND
25	190	10/19/98	VPSV-531	124	71	1.6	ND	ND
26	20	NS	NS	Р	Р	Р	Р	Р
26	35	10/19/98	VPSV-532	ND	ND	ND	ND	ND
26	55	10/19/98	VPSV-533	ND	ND	ND	3.9	ND
26	55	10/19/98	VPSV-534(DUP)	ND	- ND	ND	4.2	ND
26	80	10/19/98	VPSV-535	74	ND	4.4	6.7	ND
26	100	NS	NS	Р	Р	Р	Р	Р
26	115	10/19/98	VPSV-536	153 J	ND	1.2	3.0	ND
26	140	10/19/98	VPSV-537	167 J	7.9	ND	1.6	ND
26	160	10/20/98	VPSV-538	81	ND	ND	ND	ND
26	180	10/20/98	VPSV-539	72	ND	ND	ND	ND
26	195	10/20/98	VPSV-540	83	ND	1.4	ND	ND
26	195	10/20/98	VPSV-541(DUP)	95	ND	1.3	ND	ND
27	20	10/20/98	VPSV-542	ND	ND	ND	ND	ND
27	35	NS	NS	W	W	W	W	W
27	60	10/20/98	VPSV-543	ND	49	ND	ND	ND
27	85	10/20/98	VPSV-544	7.4	61	ND	ND	ND
27	100	10/20/98	VPSV-545	193 J	188 J	ND	ND	ND
27	100	10/20/98	VPSV-546(DUP)	203	169	ND	ND	ND
27	120	10/20/98	VPSV-547	110	215	ND	ND	ND

TABLE 1

Soil Vapor Well	Depth		Sample					
Number	(ft bgs)	Date	Number	CCl ₄	Freon 113	TCE	1,1-DCE	Chloroform
27	140	10/20/98	VPSV-548	161	268	1.2	ND	ND
27	160	10/20/98	VPSV-549	189	212	ND	ND	ND
27	180	10/20/98	VPSV-550	155	265	ND	ND	ND
27	205	10/20/98	VPSV-551	413 J	133	ND	ND	ND
27	205	10/20/98	VPSV-552(DUP)	446	130	ND	ND	ND
28	20	10/21/98	VPSV-565	ND	ND	ND	ND	ND
28	45	10/21/98	VPSV-566	ND	ND	ND	ND	ND
28	65	NS	NS	Р	P	Р	Р	Р
28	80	10/21/98	VPSV-567	22	ND	ND	ND	ND
28	105	10/21/98	VPSV-568	210 J	127	ND	ND	ND
28	120	10/21/98	VPSV-569	438 J	429 J	ND	ND	ND
28	120	10/21/98	VPSV-570(DUP)	451 J	403 J	ND	ND	ND
28	140	NS	NS	Р	P	Р	Р	Р
28	160	NS	NS	Р	Р	Р	Р	P
32	25	10/26/98	VPSV-597	ND	ND	ND	ND	ND
32	40	10/26/98	VPSV-598	ND	ND	ND	ND	ND
32	55	10/26/98	VPSV-599	ND	ND	ND	ND	ND
32	55	10/26/98	VPSV-600(DUP)	ND	ND	ND	ND	ND
32	70	10/26/98	VPSV-601	ND	ND	ND	ND	ND
32	90	10/26/98	VPSV-602	ND	ND	ND	ND	ND
32	115	NS	NS	Р	P	P	Р	Р
32	135	10/26/98	VPSV-603	ND	ND	ND	ND	ND
32	155	10/26/98	VPSV-604	14	193 J	ND	ND	ND
32	180	10/26/98	VPSV-605	110	144	4.9	ND	ND
32	180	10/26/98	VPSV-606(DUP)	125	138	6.4	ND	ND
32	195	10/26/98	VPSV-607 ´	88	193 J	3.2	ND	ND
33	20	10/21/98	VPSV-553	ND	ND	ND	ND	ND
33	40	10/21/98	VPSV-554	12	87	6.3	25	ND
33	60	10/21/98	VPSV-555	89	1.3	4.3	12	ND
33	85	10/21/98	VPSV-556	140	ND	2.8	8.3	ND

TABLE 1

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
33	105	10/21/98	VPSV-557	191 J	ND	2.4	6.8	ND
33	105	10/21/98	VPSV-558(DUP)	204	ND	2.5	7.4	ND
33	120	10/21/98	VPSV-559	141	ND	2.2	6.4	ND
33	140	10/21/98	VPSV-560	179 J	ND	ND	7.9	ND
33	160	10/21/98	VPSV-561	94	ND	ND	8.6	ND
33	180	10/21/98	VPSV-562	67	ND	ND	6.8	ND
33	200	10/21/98	VPSV-563	78	ND	1.3	5.9	ND
33	200	10/21/98	VPSV-564(DUP)	77	ND	1.1	5.8	ND
34	20	10/22/98	VPSV-583	ND	ND	ND	ND	ND
34	35	10/22/98	VPSV-584	ND	ND	ND	ND	ND
34	50	10/22/98	VPSV-585	ND	ND	ND	ND	ND
34	65	10/22/98	VPSV-586	4.5	ND	ND	ND	ND
34	80	10/22/98	VPSV-587	6.1	ND	ND	ND	ND
34	80	10/22/98	VPSV-588(DUP)	6.0	ND	ND	ND	ND
34	95	10/23/98	VPSV-589	28	ND	ND	ND	ND
34	108	10/23/98	VPSV-590	157 J	62	ND	ND	ND
34	118	10/23/98	VPSV-591	154 J	82	ND	ND	ND
35	20	10/22/98	VPSV-571	ND	ND	ND	ND	ND
35	35	10/22/98	VPSV-572	ND	ND	ND	ND	ND
35	50	10/22/98	VPSV-573	ND	ND	ND	ND	ND
35	60	10/22/98	VPSV-574	ND	ND	ND	ND	ND
35	80	10/22/98	VPSV-575	18	36	ND	ND	ND
35	80	10/22/98	VPSV-576(DUP)	20	37	ND	ND	ND
35	95	10/22/98	VPSV-577	45	48	ND	ND	ND
35	110	10/22/98	VPSV-578	65	47	ND	ND	ND
35	125	10/22/98	VPSV-579	74	54	ND	ND	ND
35	140	10/22/98	VPSV-580	125	64	ND	ND	ND
35	155	10/22/98	VPSV-581	59	61	2.4	ND	ND
35	155	10/22/98	VPSV-582(DUP)	63	68	2.8	ND	ND

TABLE 1

Soil Vapor Well	Depth		Sample					
Number	(ft bgs)	Date	Number	CCl₄	Freon 113	TCE	1,1-DCE	Chloroform
36	20	NS	NS	Р	Р	Р	Р	Р
36	35	10/23/98	VPSV-592	9.2	ND	ND	ND	ND
36	55	10/23/98	VPSV-593	17	ND	ND	ND	1.1
36	55	10/23/98	VPSV-594(DUP)	16	ND	ND	ND	1.1
36	75	10/23/98	VPSV-595	22	31	ND	ND	3.8
36	92	10/23/98	VPSV-596	20	29	ND	ND	4.0
37	25	10/26/98	VPSV-608	ND	ND	ND	ND	ND
37	40	10/26/98	VPSV-609	24	ND	1.2	ND	ND
37	60	10/26/98	VPSV-610	43	ND	ND	ND	ND
37	80	10/26/98	VPSV-611	64	51	2.3	ND	ND
37	80	10/26/98	VPSV-612(DUP)	60	48	2.4	ND	ND
37	100	10/26/98	VPSV-613	62	57	3.5	ND	ND
37	120	10/27/98	VPSV-614	32	ND	6.1	ND	ND
37	140	10/27/98	VPSV-615	30	37	4.5	ND	ND
37	155	10/27/98	VPSV-616	26	47	2.3	ND	ND
37	170	10/27/98	VPSV-617	23	38	3.0	ND	ND
37	185	10/27/98	VPSV-618	12	6.5	2.2	ND	ND
37	185	10/27/98	VPSV-619(DUP)	12	6.8	1.7	ND	ND
38	25	10/27/98	VPSV-620	ND	ND	ND	ND	ND
38	45	10/27/98	VPSV-621	5.6	ND	ND	ND	ND
38	65	10/27/98	VPSV-622	15	57	2.2	ND	ND
38	80	10/27/98	VPSV-623	11	74	1.6	ND	ND
38	80	10/27/98	VPSV-624(DUP)	15	56	2.1	ND	ND
38	95	NS	NS `	W	W	w	W	W
38	110	10/27/98	VPSV-625	13	43	1.4	ND	ND
38	125	10/27/98	VPSV-626	18	81	1.8	ND	ND
38	140	10/27/98	VPSV-627	18	67	1.9	ND	ND
38	155	10/27/98	VPSV-628	17	75	1.8	ND	ND
38	170	10/27/98	VPSV-629	22	103	3.0	ND	ND
38	170	10/27/98	VPSV-630(DUP)	24	112	3.4	ND	ND

TABLE 1

SUMMARY OF SOIL-VAPOR RESULTS FIRST LONG-TERM SAMPLING EVENT

(Concentrations in $\mu g/L$ -vapor)

Soil Vapor Well Number	Depth (ft bgs)	Date	Sample Number	CCI ₄	Freon 113	TCE	1,1-DCE	Chloroform
39	20	10/28/98	VPSV-631	ND	ND	ND	ND	ND
39	35	10/28/98	VPSV-632	ND	ND	ND	ND	ND
39	50	10/28/98	VPSV-633	ND	ND	ND	ND	ND ND
39	70	10/28/98	VPSV-634	ND	ND I	ND	ND	ND
39	85	10/28/98	VPSV-635	3.7	66	1.5	ND	ND
39	85	10/28/98	VPSV-636(DUP)	3.9	78	1.6	ND	ND
39	100	10/28/98	VPSV-637	7.9	77	3.3	ND	ND
39	110	10/28/98	VPSV-638	9.8	67	4.7	ND	ND
39	120	10/28/98	VPSV-639	6.5	50	10	ND	ND
39	130	10/28/98	VPSV-640	6.2	50	15	ND	ND

Notes:

bgs - Below ground surface.

DUP - Duplicate samples.

J - Estimated concentration; result exceeded calibration range.

ND - Not detected.

NS - Not sampled.

P - Sampling port plugged.

W - Sampling port inundated with water.

APPENDIX B

- **B-1 RESULTS OF SOIL-VAPOR ANALYSES**
- **B-2 CHAIN-OF-CUSTODY FORMS**
- **B-3 INITIAL THREE-POINT CALIBRATION DATA**
- B-4 DAILY OPENING, CLOSING, AND CONTINUING CALIBRATION VERIFICATION REPORTS

APPENDIX B-1 RESULTS OF SOIL-VAPOR ANALYSES

Mr. B.G. Randolph Foster Wheeler 611 Anton Boulevard Suite 800 Costa Mesa, CA 92626

SUBJECT: DATA REPORT - JPL - OAK GROVE DRIVE, PASADENA, CA - FOSTER WHEELER PROJECT #1572.0263

TEG Project # 981019W1

Mr. Randolph:

Please find enclosed a data report for the above referenced location. Soil vapor samples were analyzed on-site in TEG's DOHS certified mobile laboratory (CERT #1745).

Project Summary

Soil vapor from 118 points was analyzed for:

- volatile halogenated hydrocarbons by EPA Method 8010
- volatile aromatic hydrocarbons (BTEX) by Modified EPA Method 8020
- 6 extra LCS

The samples were received on-site in appropriate containers with appropriate labels, seals, and chain-of-custody documentation.

Project Narrative

The results for all analyses and required QA/QC analyses are summarized in the enclosed tables. All calibrations, blanks, surrogates, and spike recoveries fulfill quality control criteria. No data qualifiers (flags) apply to any of the reported data.

TEG appreciates the opportunity to provide analytical services to Foster Wheeler on this project. If you have any questions relating to this data or report, please do not hesitate to contact us.

Sincerely,

Dayu Jankman Dr. Blayne Hartman

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV523-20	VPSV524-40	VPSV525-85	VPSV526-120	VPSV527-145	PSV528-145 DUP	VPSV529-168
DATE	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/9
SAMPLING TIME	8:39	9:00	9:24	9:46	10:12	10:34	10:56	11:2
ANALYSIS TIME	08:39	09:03	09:26	09:48	10:13	10:36	10:59	11:2:
SAMPLING DEPTH (feet)		20	40	85	120	145	145	169
VOLUME WITHDRAWN (cc)	200	80	160	340	480	580	580	660
VOLUME INJECTED	1	1	1	1	1	. 1	0.5	1
DILUTION FACTOR	111	. 1	1	1	1	1	2	1
CARBON TETRACHLORIDE	nd	nd	nd	83	440			
CHLOROETHANE/BROMOMETHANE	nd	nd			119	286	285	217
CHLOROFORM	nd	nd	nd nd	nd nd	nd 	nd	nd	no
1.1-DICHLORO ETHANE	nd	nd			nd ad	nd	nd	no
1,2-DICHLORO ETHANE	nd	nd	nd nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHENE	nd	nd	nd	nd nd	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd	nd			nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd d	nd	nd	nd	no
DICHLOROMETHANE	กต		nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE		nd	nd	nd	nd	nd	nd	no
1.1.1.2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
	nd	nd	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
VINYL CHLORIDE	nđ	nd	nd	nd	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd .	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	152	147	233
BENZENE	nd	nd	nd	nd	nd	nd	nd	no
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	no
TOLUENE	nd	nd	nd	nd	nd	nd	nd	· no
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd ·	nđ	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	86%	97%	89%	94%	91%	95%	94%	97%
CHLOROBENZENE	94%	106%	99%	104%	101%	106%	105%	107%
4 BROMOFLUORO BENZENE	81%	93% POR FOR EACH CO	85%	92%	86%	91%	91%	93%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV530-180	VPSV531-190	VPSV532-35	VPSV533-55 \	/PSV534-55 DUP	VPSV535-80	VPSV536-115	VPSV537-140
DATE	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98
SAMPLING TIME	11:42	12:04	12:29	12:51	13:14	13:58	14:25	14:48
ANALYSIS TIME	11:45	12:08	12:31	12:54	13:17	14:03	14:28	14:51
SAMPLING DEPTH (feet)	180	190	35	55	55	80	115	140
VOLUME WITHDRAWN (cc)	720	760	140	220	220	320	460	560
VOLUME INJECTED	0.5	1	1	1	1	1	1	1
DILUTION FACTOR	2	1	1	1	1	i	1	1
CARBON TETRACHLORIDE	118	124	nd	nd	nd	74	153	403
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd			167
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd 	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd 	nd d	nd
1,2-DICHLORO ETHANE	nd	- nd	nd	nd	nd	nd	nd	nđ
1,1-DICHLORO ETHENE	nd	nd	nd	3.9	4.2	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd		6.7	3.0	1.6
TRANS-1,2-DICHLORO ETHENE	nd	nd nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd		nd-	nd	nd	nd
TETRACHLORO ETHENE	nd	nd		nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd nd	nd d	nd	nd	nd	. nd
1.1.1-TRICHLORO ETHANE	nd nd			nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE		nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	1.6	nd	nd	nd	4.4	1.2	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	กต์
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	133	71	nd	nd	nd	nd	nd	7.9
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	98%	98%	97%	99%	100%	95%	104%	96%
CHLOROBENZENE	109%	108%	107%	110%	111%	105%	115%	107%
4 BROMOFLUORO BENZENE	95%	93%	94%	96%	96%	92%	99%	93%
ND INDICATES NOT DETECTED AT A DETECTION L	IMIT OF 1.0 UG/L-VA	POR FOR EACH C	OMPOUND					3070

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

BLANK	BLANK	VPSV523-20	VPSV523-20	VPSV524-40	VPSV524-40	VPSV525-85	VPSV525-85
10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98
8:39	8:39	9:00	9:00	9:24	9:24	9:46	9;46
8:39	8:39	9:03	9:03	9:26	9:26	·	9:48
	-	20	20	40	40		85
200	200	80	80	160	• •		340
1	1	: 1	. 1	1	1	1	1
1	1	1	1	1	1	1	1
RT	AREA	RT	AREA	RT	AREA	RT	AREA
nd	nd	nd	nd	nd			9,196
nd	nd	nd	nd				0,100 nd
nd	nd	nd	nd	nd			nd
nd	nd	nd ·	nd	nd -			nd
nd	nd	nd	nd	nd			nd
nd	nd	nđ	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd ·	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd		· -	nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd				nd
nd	nd	nd	nd				nd
nd	nd nd	nd	nd			· · · ·	nd
nd	nd	nd	nd	nd			nd
nd	nd	nd					nd
nd	nd	nd					nd
nd	nd						nd
nd							:
nd			. '				nd nd
nd							nd
					110	na	nu.
10,0	185	9.9	209	9.9	103	0.0	202
19.2	668	19.2	767	19.3	700	19.3	512 760
	10/19/98 8:39 8:39 8:39 200 1 1 1 RT nd	10/19/98	10/19/98 10/19/98 10/19/98 8:39 8:39 9:00 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/19/98	10/19/98 10/19/98 10/19/98 10/19/98 8:39 8:39 9:00 9:00 9:24 8:39 9:03 9:03 9:26 9:26 9:20 40 200 80 80 80 160 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/19/98 10/19/98 10/19/98 10/19/98 10/19/98 3.39 8.39 9.00 9.00 9.24 9.24 8.39 8.39 9.03 9.03 9.03 9.26 9	10/19/98 10/19/98 10/19/98 10/19/98 10/19/98 10/19/98 8:39 8:39 9:00 9:00 9:24 9:24 9:24 9:48 8:39 8:39 9:03 9:03 9:03 9:03 9:03 9:06 9:26 9:26 9:48 9:20 200 200 80 80 80 160 160 340 160 340 161 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

	VPSV526-120	VPSV526-120	VPSV527-145	VPSV527-145	VPSV528-145 DUP	VPSV528-145 DUP	VPSV529-165	VPSV529-165
DATE	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98
SAMPLING TIME	10:12	10:12	10:34	10:34	10:56	10:56	11:20	11:20
ANALYSIS TIME	10:13	10:13	10:36	10:36	10:59	10:59	11:22	11:22
SAMPLING DEPTH (feet)	120	120	145	145	145	145	165	165
VOLUME WITHDRAWN (cc)	480	480	580	580	580	580	660	660
VOLUME INJECTED	1	1	1	1	0.5	0.5	1	1
DILUTION FACTOR	1	1	1	1	2	2	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.5	13,139	9.4	31,543	9.4	31,397	9.4	23,964
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	20,00- no
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	' nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd		nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd 	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd		nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	5.4	2,462	5.4	nd 2,380	nd	nd
BENZENE	nd	nd	nd		nd		5.3	3,769
ETHYLBENZENE	nd	nd	nd	nd		nd 	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES		,,,	710	110	TIQ.	nd	nd	nd
1,4 DIFLUORO BENZENE	10.0	196	10.0	206	9.9	204	40.0	
CHLOROBENZENE	16.3	495	16.3	521	9.9 16.2	204 515	10.0	209
4 BROMOFLUORO BENZENE	19.3	710	19.3	751	19.3	515 750	16.2 19.2	528
ND INDICATES NOT DETECTED AT A DETECTION L			IPOLIND		13,3	750	19.2	768

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

	VPSV530-180	VPSV530-180	VPSV531-190	VPSV531-190	VPSV532-35	VPSV532-35	VPSV533-55	VPSV533-55
DATE	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98
SAMPLING TIME	11:42	11:42	12:04	12:04	12:29	12:29	12:51	12:51
ANALYSIS TIME	11:45	11:45	12:08	12:08	12:31	12:31	12:54	12:54
SAMPLING DEPTH (feet)	180	180	190	190	35	35	55	55
VOLUME WITHDRAWN (cc)	720	720	760	760	140	140	220	220
VOLUME INJECTED	0.5	0.5	1	1	1	1	1	1
DILUTION FACTOR	2	2	1	1	1	1	i	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	12,963	9.4	13,658	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	. nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	5.4	36
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd nd
TRICHLORO ETHENE	nd	nď	10.6	26	nd	nd	nd nd	nd nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.4	2,157	5.3	1,151	nd	nd	· nd	nd nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	
ETHYLBENZENE	nd	nd	nd	nd	nd	nd		nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd		nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES	<u> </u>			1.0	110	nu .	na	nd
1,4 DIFLUORO BENZENE	9.9	212	10.0	211	9.9	209	9.9	046
CHLOROBENZENE	16.2	538	16.2	529	16,2	525		213
4 BROMOFLUORO BENZENE	19.2	779	19.2	767	19,2	525 770	16.2 19.2	539
ND INDICATES NOT DETECTED AT A DETECTION L					19.2	110	19.2	786

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981019W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

	VPSV534-55 DUP	VPSV534-55 DUP	VPSV535-80	VPSV535-80	VPSV536-115	VPSV536-115	VPSV537-140	VPSV537-140
DATE	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98	10/19/98
SAMPLING TIME	13:14	13:14	13:58	13:58	14:25	14:25	14:48	14:48
ANALYSIS TIME	13:17	13:17	14:03	14:03	14:28	14:28	14:51	14:51
SAMPLING DEPTH (feet)	55	55	80	80	115	115	140	140
VOLUME WITHDRAWN (cc)	220	220	320	320	460	460	560	560
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	
	RT	AREA	RT	AREA	ŔŢ	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.4	8,181	9.4	16,824	9.4	18,388
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	5.5	39	5.5	62	5.5	28	5.4	15
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.6	70	10.6	20	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd nd	nd	
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	5.4	nd 128
BENZENE	nd	nd	nd	nd	nd	nd	nd	
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								110
1,4 DIFLUORO BENZENE	10.0	216	10.0	206	10.0	224	10.0	207
CHLOROBENZENE	16.2	548	16.2	518	16.3	564	16.2	
4 BROMOFLUORO BENZENE	19.2	792	19.3	754	19.3	815	19.3	525 761
ND INDICATES NOT DETECTED AT A DETECTION						010	19.3	/61

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981020W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV538-160	VPSV539-180	VPSV540-195	VPSV541-195 DUP	VPSV542-20	VPSV543-60	VPSV544-85
DATE	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
SAMPLING TIME	05:10	07:53	08:19	08:42	09:05	09:28	09:50	10:12
ANALYSIS TIME	05:12	07:55	08:21	08:44	09:07	09:29	09:52	10:14
SAMPLING DEPTH (feet)		160	180	195	195	20	60	85
VOLUME WITHDRAWN (cc)	200	640	720	780	780	80	240	340
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	11	1
CARBON TETRACHLORIDE	nd	81	72	83	95	nd	nd	7.4
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd		nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	1.4	1.3	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	49	61
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES						110		na na
1,4 DIFLUORO BENZENE	86%	102%	94%	93%	87%	87%	87%	96%
CHLOROBENZENE	94%	113%	101%	103%	97%	98%	97%	107%
4 BROMOFLUORO BENZENE	81%	95%	87%	88%	84%	86%	83%	92%
ND INDICATES NOT DETECTED AT A DETECTION LIM			POUND	3070	U-170	0078	00.70	9270

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981020W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV545-100	VPSV546-100 DUP	VPSV547-120	VPSV548-140	VPSV549-160	VPSV550-180	VPSV551-205	VPSV552-205 DUP
DATE	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
SAMPLING TIME	10:35	10:56	11:20	11:44	12:06	12:50	13:16	
ANALYSIS TIME	10:37	11:00	11:22	11:45	12:08	12:53	13:17	
SAMPLING DEPTH (feet)	100	100	120	140	160	180	205	
VOLUME WITHDRAWN (cc)	400	400	480	560	640	720	820	
VOLUME INJECTED	1	0.5	. 0.5	0.5	0.2	0.5	0.5	
DILUTION FACTOR	1	2	2	2	5	2	2	
CARBON TETRACHLORIDE	193	203	110	161	189	155	146	
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd		413	
CHLOROFORM	nd	nd	nd	nd		nd	nd	
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd 	nd	
1,2-DICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	, nd	nd	nd nd	nd 	nd	
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd		nd	nd	nd
TRANS-1.2-DICHLORO ETHENE	nd	nd	nd		nd	nd	nd .	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd		nd nd	nd 	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd		nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd		nd	nd d	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE		nd nd	nd 	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd 1	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	1.2	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	188	169	215	268	212	265	133	130
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES	nd	nd	nd	nd	nd	nd	nd	nd
1,4 DIFLUORO BENZENE	99%	97%	95%	96%	93%	90%	88%	86%
CHLOROBENZENE	111%	108%	106%	103%	104%	101%	100%	95%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION LII	95%	92%	91%	89%	90%	86%	86%	83%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981020W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV538-160	VPSV538-160	VPSV539-180	VPSV539-180	VPSV540-195	VPSV540-195
DATE	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
SAMPLING TIME	5:10	5:10	7:53	7:53	8:19	8:19	8:42	8:42
ANALYSIS TIME	5:12	5:12	7:55	7:55	8:21	8:21	8:44	8:44
SAMPLING DEPTH (feet)			160	160	180	180	195	195
VOLUME WITHDRAWN (cc)	200	200	640	640	720	720	780	780
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.5	8,913	9.5	7,889	9.4	9,115
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	- nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nď	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	· nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	. nd	nd	nd	10.6	23
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	9,9	186	10.1	220	10.1	203	9.9	200
CHLOROBENZENE	16.2	464	16.4	556	16.3	499	16.2	508
4 BROMOFLUORO BENZENE	19.3	669	19.4	777	19.3	717	19.2	726
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UG/L-VAI	OR FOR EACH	COMPOUND					

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981020W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV541-195 DUP	VPSV541-195 DUP	VPSV542-20	VPSV542-20	VPSV543-60	VPSV543-60	VPSV544-85	VPSV544-85
DATE	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
SAMPLING TIME	9:05	9:05	9:28	9:28	9:50	9:50	10:12	10:12
ANALYSIS TIME	9:07	9:07	9:29	9:29	9:52	9:52	10:14	10:14
SAMPLING DEPTH (feet)	195	195	20	20	60	60	85	85
VOLUME WITHDRAWN (cc)	780	780	80	80	240	240	340	340
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1
	RT	AREA	RT	ARÉA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	10,480	nd	nd	nd	nd	9.4	816
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nđ	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	ńd	nd	nd	nd	nd
TRICHLORO ETHENE	10.6	21	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nď	nd	nd	5.3	795	5.3	982
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	·nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES			********					
1,4 DIFLUORO BENZENE	9.9	188	9.9	188	9.9	187	9.9	208
CHLOROBENZENE	16.2	479	16.2	481	16.2	479	16.3	527
4 BROMOFLUORO BENZENE	19.2	694	19.2	709	19.3	686	19.3	757
ND INDICATES NOT DETECTED AT A DETECTION	ON LIMIT OF 1.0 UG/	L-VAPOR FOR EACH	COMPOUND					101

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981020W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

VPSV545-100	VPSV545-100	VPSV546-100 DUP	VPSV546-100 DUP	VPSV547-120	VPSV547-120	VPSV548-140	VPSV548-140
10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
10:35	10:35	10:56	10:56	11:20	11:20	11:44	11:44
10:37	10:37	11:00	11:00	11:22	11:22	11:45	11:45
100	100	100	100	120	120	140	140
400	400	400	400	480	480	560	560
1	1	0.5	0.5	0.5	0.5	0.5	0.5
1	1	2	2	2	2	2	2
RT	AREA	RT	AREA	RT	AREA	RT	AREA
9.4	21,286	9.4	22,371	9.4	12,080	9.4	17,728
nd	nd	nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd		nd
nd	nd	nd	nd	nd	nd		nd
∙nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd			nd
nd	nd	nd	nd	nd	nd		nd
nd	nd	nd	. nd	nd			nd
nd	nd	nd	nd				19
nd	nd	nd	nd				nd
nd	nd						nd
nd	nd						nd
5.2	3,044	5.3					4,347
nd	nd	nd					nd
nd	nd	nd	nd	· .			nd
nd	nd	nd	nd				nd
nd							nd
nd	nd	nd					nd
nd	nd	nd					nd
						110	na na
10.0	214	9.9	209	10.0	205	9.0	208
16.3	546						508
19.3	781	19.3	757	19.3	750	19.3	734
	10/20/98 10:35 10:37 100 400 1 1 1 RT 9.4 nd	10/20/98 10:35 10:35 10:37 100 100 400 400 400 1 1 1 1 1 RT AREA 9.4 21,286 nd n	10/20/98 10/20/98 10/20/98 10:35 10:35 10:56 10:37 10:37 11:00 100 400 400 400 400 400 1 1 1 1 0.5 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1	10/20/98 10/20/98 10/20/98 10/20/98 10:35 10:35 10:56 10:56 10:37 10:37 11:00 11:00 100 100 100 100 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 100 21,286 9.4 22,371 nd nd nd nd nd nd nd nd nd nd nd nd nd nd	10/20/98 10/20/98 10/20/98 10/20/98 10:35 10:35 10:56 10:56 11:20 10:37 10:37 11:00 11:00 120 400 100 100 100 120 400 400 400 400 480 1 1 0.5 0.5 0.5 1 1 2 2 2 RT AREA RT AREA RT 9.4 21,286 9.4 22,371 9.4 nd nd nd nd nd nd nd nd nd <td> 10/20/98 10/20/98</td> <td>10/20/98 10/</td>	10/20/98 10/20/98	10/20/98 10/

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981020W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV549-160	VPSV549-160	VPSV550-180	VPSV550-180	VPSV551-205	VPSV551-205	VPSV552-205 DUP	VPSV552-205 DUP
DATE	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98	10/20/98
SAMPLING TIME	12:06	12:06	12:50	12:50	13:16	13:16	13:38	13:38
ANALYSIS TIME	12:08	12:08	12:53	12:53	13:17	13:17	13:40	13:40
SAMPLING DEPTH (feet)	160	160	180	180	205	205	205	205
VOLUME WITHDRAWN (cc)	640	640	720	720	820	820	820	820
VOLUME INJECTED	0.2	0.2	0.5	0.5	0.5	0.5	0.2	0.2
DILUTION FACTOR	5	5	2	2	2	2	5	5
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	20,871	9.4	17,150	9.4	45,531	9.4	49,195
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	- nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	3,441	5.3	4,291	5,3	2,162	5.3	2,104
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nď	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								114
1,4 DIFLUORO BENZENE	9.9	201	9.9	194	9.9	189	9.9	185
CHLOROBENZENE	16.2	510	16.2	497	16.2	490	16.2	467
4 BROMOFLUORO BENZENE	19.3	737	19.3	706	19.3	708	19.3	681
ND INDICATES NOT DETECTED AT A DETECTIO	N LIMIT OF 1.0 UG/L-V	APOR FOR FACH O	COMPOUND	······································				

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV553-20	VPSV554-40	VPSV555-60	VPSV556-85	VPSV557-105 \	PSV558-105 DUP
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	5:15	7:29	7:50	8:12	8:34	8:57	9:18
ANALYSIS TIME	05:18	07:30	07:52	08:14	08:36	8;58	09:21
SAMPLING DEPTH (feet)	••	20	40	60	85	105	105
VOLUME WITHDRAWN (cc)	200	80	160	240	340	420	420
VOLUME INJECTED	1	1	1	1	1	1	0.5
DILUTION FACTOR	1	1	1	1	<u>1</u> .		2
CARBON TETRACHLORIDE	nd	nd	12	89	140	191	604
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd			204
CHLOROFORM	nd	nd	nd	nd	nd 	nd	nd
1,1-DICHLORO ETHANE	rid	nd	nd		nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd nd	nd	nd	nd	nd	nd .
1,1-DICHLORO ETHENE	nd	nd	25	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	12	8.3	6.8	7.4
TRANS-1,2-DICHLORO ETHENE	nd	nd		nd	nd	nd	nd
DICHLOROMETHANE	nd		nd d	nd	nd	nd	nd
TETRACHLORO ETHENE		· nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd nd	nd 	nd	nd	nd	nd	nd
1.1.2.2-TETRACHLORO ETHANE	nd nd	nd 	nd	nd	nd	nd	nd
1.1.1-TRICHLORO ETHANE		nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	6.3	4.3	2.8	2.4	2.5
	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	87	1.3	nd ·	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd
SURROGATES							110
1,4 DIFLUORO BENZENE	93%	112%	96%	96%	91%	104%	107%
CHLOROBENZENE	104%	105%	107%	112%	102%	115%	119%
4 BROMOFLUORO BENZENE	88%	95%	95%	96%	88%	99%	105%
ND INDICATES NOT DETECTED AT A DETECTION LIMI	T OF 1.0 UG/L-VAPO	OR FOR EACH COM	POUND			5576	105%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1 GC SHIMADZU 14A RIGHT VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA I

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV559-120	VPSV560-140	VPSV561-160	VPSV562-180	VPSV563-200	VPSV564-200 DUP	VPSV565-20
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	9:41	10:03	10:25	10:47	11:10	11:32	12:20
ANALYSIS TIME	09:42	10:05	10:27	10:49	11:11	11:33	12:23
SAMPLING DEPTH (feet)	120	140	160	180	200	200	20
VOLUME WITHDRAWN (cc)	480	560	640	720	800	800	80
VOLUME INJECTED	0.5	1	1	1	1	1	1
DILUTION FACTOR	2	1	1	1	1	<u>.</u> i	i
CARBON TETRACHLORIDE	141	179	94	67	70		
CHLOROETHANE/BROMOMETHANE	nd	nd			78	77	nd
CHLOROFORM	nd		nd	nd	: nd	nd	nd
1.1-DICHLORO ETHANE		nd	nd 	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd d	nd	nd	nd	nd	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	6.4	7.9	8.6	6.8	5.9	5.8	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nđ	nd	nd
· · · · · · · · · · · · · · · · · · ·	nd 	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE TETRACHLORO ETHENE	nd -	nd	nd	nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	2.2	nd	nd	nd	1.3	1.1	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	. nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	. nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd
SURROGATES	***					110	
1,4 DIFLUORO BENZENE	96%	96%	96%	100%	100%	97%	92%
CHLOROBENZENE	107%	107%	106%	111%	108%	109%	103%
4 BROMOFLUORO BENZENE	93%	92%	92%	96%	96%	93%	88%
ND INDICATES NOT DETECTED AT A DETECTION L					3070	5578	00%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV566-45	VPSV567-80	VPSV568-105	VPSV569-120	VPSV570-120 DUP
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	12:42	13:05	13:27	13:49	14:12
ANALYSIS TIME	12:45	13:08	13:30	13:52	14:14
SAMPLING DEPTH (feet)	45	80	105	120	120
VOLUME WITHDRAWN (cc)	180	320	420	480	480
VOLUME INJECTED	1	1	1	0.5	0.5
DILUTION FACTOR	1	1	1	2	2
CARBON TETRACHLORIDE	nd	22	210	438	451
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	. nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	127	429	403
BENZENE	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd
SURROGATES			· · · · · · · · · · · · · · · · · · ·		
1,4 DIFLUORO BENZENE	93%	96%	92%	93%	98%
CHLOROBENZENE	104%	108%	103%	104%	110%
4 BROMOFLUORO BENZENE	88%	94%	88%	88%	94%
ND INDICATES NOT DETECTED AT A DETECTION LIF	AIT OF 1.0 UG/L-VAPO	OR FOR EACH COM	POUND		
ANALYSES PERFORMED ON-SITE IN TEG'S DOHS C	EDTIEIED MODII E I A	POPATORY (CERT	#1745)		

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV553-20	VPSV553-20	VPSV554-40	VPSV554-40	VPSV555-60	VPSV555-6
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/9
SAMPLING TIME	5:15	5:15	7:29	7:29	7:50	7:50	8:12	8:1:
ANALYSIS TIME	5:18	5:18	7:30	7:30	7:52	7:52	8:14	8:1
SAMPLING DEPTH (feet)			20	20	40	40	60	60
VOLUME WITHDRAWN (cc)	200	200	80	80	160	160	240	240
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	. 1
	RT	AREA	RT	AREA	RT	AREA	RT	ARE
CARBON TETRACHLORIDE	nd	nd	nd	nd	9.2	1,343	9.2	9,87
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	n
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	n
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	n
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	n. n
1,1-DICHLORO ETHENE	nd	nd	nd	nd	5.3	229	5.3	10
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nđ	nd	nd	nd	n
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	n
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	n
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	n
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nđ	nd	ne
1,1,2,2-TETRACHLORO ETHANE	nd nd	nd	nd .	nd	nd	nd	nd	n
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	. nd	nd	nd	n
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	n
TRICHLORO ETHENE	nd	nd -	nd	nd	10.4	102	10.4	6
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	រា
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	n
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	n
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	5.4	1,412	5.2	20
BENZENE	nd	nd	nd	nd	nd	nd	nd	n
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	ne
TOLUENE	nd	nd	nd	nd	. nd	nd	nd	ne
m&p-XYLENES	nd	nd	nd	nd	nd	nď	nd	no
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	ne
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	ne
SURROGATES				· · · · · · · · · · · · · · · · · · ·				
1,4 DIFLUORO BENZENE	9.9	201	9.8	242	9.8	207	9.7	207
CHLOROBENZENE	16.3	513	16.0	518	16.0	528	16.2	550
4 BROMOFLUORO BENZENE	19.3	721	19.0	777	19.0	778	19.3	79

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV556-85	VPSV556-85	VPSV557-105	VPSV557-105	VPSV558-105 DUP	VPSV558-105 DUP
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	8:34	8:34	8:57	8:57	9:18	9:18
ANALYSIS TIME	8:36	8:36	8:58	8:58	9:21	9:21
SAMPLING DEPTH (feet)	85	85	105	105	105	105
VOLUME WITHDRAWN (cc)	340	340	420	420	420	420
VOLUME INJECTED	1	1	1	1	0.5	0.5
DILUTION FACTOR	1	1	1	1	2	2
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	15,415	9.3	21,050	9.4	22,454
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	5.4	77	5.4	64	5.4	69
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nđ	nd	nd	nď	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.6	45	10.5	38	10.6	40
VINYL CHLORIDE	nd	nd	nd -	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd-	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nđ	nd	nd	nd	nd	nd
SURROGATES		***************************************				
1,4 DIFLUORO BENZENE	9.9	197	9.9	224	9.9	231
CHLOROBENZENE	16.2	500	16.2	568	16.3	587
4 BROMOFLUORO BENZENE	19.3	723	19.3	813	19.3	859
ND INDICATES NOT DETECTED AT A DETECTION LI	MIT OF 1.0 UG/L-VAPOR I	OR EACH COMPOUN				

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV559-120	VPSV559-120	VPSV560-140	VPSV560-140	VPSV561-160	VPSV561-160
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	9:41	9:41	10:03	10:03	10:25	10:25
ANALYSIS TIME	9:42	9:42	10:05	10:05	10:27	10:27
SAMPLING DEPTH (feet)	120	120	140	140	160	160
VOLUME WITHDRAWN (cc)	480	480	560	560	640	640
VOLUME INJECTED	0.5	0.5	1	1	1	1
DILUTION FACTOR	2	2	1	1	. 1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	15,503	9.3	19,730	9,3	10,342
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	5.3	60	5.4	74	5.4	80
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.5	35	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	. nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES					,,,,	110
1,4 DIFLUORO BENZENE	9.8	207	9.9	207	9.9	207
CHLOROBENZENE	16.2	527	16.2	524	16.2	523
4 BROMOFLUORO BENZENE	19.2	761	19.2	757	19.2	757
ND INDICATES NOT DETECTED AT A DETECTION LI					17.2	151

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981021W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR AREA COUNTS

S. T.	VPSV562-180	VPSV562-180	VPSV563-200	VPSV563-200	VPSV564-200 DUP	VPSV564-200 DUP
DATE SAMPLING TIME	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
ANALYSIS TIME	10:47	10:47	11:10	11:10	11:32	11:32
	10:49	10:49	11:11	11:11	11:33	11:33
SAMPLING DEPTH (feet)	180	180	200	200	200	200
VOLUME WITHDRAWN (cc)	720	720	800	800	800	800
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
04 P0011 TETTO 4 01 11 0 P1 P	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	7,396	9.4	8,620	9.3	8,504
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nđ	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	5.3	63	5.4	55	5.4	54
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.6	21	10.6	18
VINYL CHLORIDE	∘nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	· nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	
o-XYLENE	nd	nd	nd	nd	nd	nd nd
CHLOROMETHANE	nd	nd	nd	nd	nd	
SURROGATES					ılu -	nd
1,4 DIFLUORO BENZENE	9.8	216	9.9	215	9.9	
CHLOROBENZENE	16.2	547	16.2	530	9.9 16.2	209
4 BROMOFLUORO BENZENE	19.2	790	19.3	789	16.2	534
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UG/L-VAPOR	EOR FACH COMPOL	IND	709	19.3	765

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV565-20	VPSV565-20	VPSV566-45	VPSV566-45	VPSV567-80	VPSV567-80
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	12:20	12:20	12:42	12:42	13:05	13:05
ANALYSIS TIME	12:23	12:23	12:45	12:45	13:08	13:08
SAMPLING DEPTH (feet)	20	20	45	45	80	80
VOLUME WITHDRAWN (cc)	80	80	180	180	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	9.4	2,446
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						1.0
1,4 DIFLUORO BENZENE	9.9	199	9.9	201	9.9	208
CHLOROBENZENE	16.3	506	16.3	510	16.2	532
4 BROMOFLUORO BENZENE	19.3	723	19.3	723	19.3	776

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981021W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV568-105	VPSV568-105	VPSV569-120	VPSV569-120	VPSV570-120 DUP	VPSV570-120 DUP
DATE	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98	10/21/98
SAMPLING TIME	13:27	13:27	13:49	13:49	14:12	14:12
ANALYSIS TIME	13:30	13:30	13:52	13:52	14:14	14:14
SAMPLING DEPTH (feet)	105	105	120	120	120	120
VOLUME WITHDRAWN (cc)	420	420	480	480	480	480
VOLUME INJECTED	1	1	0.5	0.5	0.5	0.5
DILUTION FACTOR	1	1	2	2	2	2
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	23,108	9.3	48,302	9.3	49,794
CHLOROETHANE/BROMOMETHANE	nd	nd	nd -	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	. nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd .	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	. nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd.
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	:
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd		nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5,3	2,061	5.2	6,945	nd 5.3	nd
BENZENE	nd	nd	nd	0,945 nd		6,522
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd		nd	nd
o-XYLENE	nd	nd	nd	nd nd	nd 	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES			nd	na	nd	nd
1,4 DIFLUORO BENZENE	9.9	199	9.9	201		
CHLOROBENZENE	16.2	506	9.9 16.2	201 510	9.9	212
4 BROMOFLUORO BENZENE	19.3	724	19.3	510 727	16.3	539
ND INDICATES NOT DETECTED AT A DETECTION L			13.3	121	19.3	769

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

SAMPLING TIME		BLANK	VPSV571-20	VPSV572-35	VPSV573-50	VPSV574-60
SAMPLING TIME	DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING DEPTH (Rest)		5:00	7:27	7:48	8:10	8:33
SAMPLING DEPTH ((eb) O'CLUME INITION FACTOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	05:01	07:28	07:51	08:12	08:34
VOLUME WITHDRAWN (cc) 200 80 140 200 VOLUME INJECTED 1 1 1 1 DILUTION FACTOR 1 1 1 1 CARBON TETRACHLORIDE nd nd nd nd CHLOROFTHANEBROMOMETHANE nd nd nd nd CHLOROFORM nd nd nd nd nd 1,1-DICHLORO ETHANE nd nd </td <td></td> <td>••</td> <td>20</td> <td>35</td> <td>50</td> <td>60</td>		••	20	35	50	60
VOLIME INJECTED 1	VOLUME WITHDRAWN (cc)	200	80			240
CARBON TETRACHLORIDE ORDINATION OF THANE ORDINATION ORDINAT		1	1	1	1	. 1
CHLOROETHANE/BROMOMETHANE nd n	DILUTION FACTOR	1	1	<u> </u>	i	
CHLOROETHANE/BROMOMETHANE	CARBON TETRACHLORIDE	nd	nd	nd	nd	nd
CHLOROFORM	CHLOROETHANE/BROMOMETHANE					nd nd
1.1-DICHLORO ETHANE 1.2-DICHLORO ETHANE 1.1-DICHLORO ETHANE 1.1-DICHLORO ETHENE 1.2-DICHLORO ETHANE 1.2-DI	CHLOROFORM					
1,2-DICHLORO ETHANE	1,1-DICHLORO ETHANE					nd
1,1-DICHLORO ETHENE	1,2-DICHLORO ETHANE					nd nd
CIS-1,2-DICHLORO ETHENE nd nd nd nd nd nd nd n	1,1-DICHLORO ETHENE					
TRANS-1,2-DICHLORO ETHENE nd nd nd nd DICHLOROMETHANE nd nd nd nd TETRACHLORO ETHENE nd nd nd nd 1,1,2-TETRACHLORO ETHANE nd nd nd nd 1,1,2-TEICHLORO ETHANE nd nd nd nd 1,1,2-TRICHLORO ETHANE nd nd nd nd TRICHLORO ETHANE (FR11) nd nd nd nd TRICHLOROFILUOROMETHANE (FR11) nd nd <t< td=""><td>CIS-1,2-DICHLORO ETHENE</td><td></td><td></td><td></td><td></td><td>nd</td></t<>	CIS-1,2-DICHLORO ETHENE					nd
DICHLOROMETHANE nd nd nd nd TETRACHLORO ETHENE nd nd nd nd 1,1,2-TETRACHLORO ETHANE nd nd nd nd 1,1,2-TEICHLORO ETHANE nd nd nd nd 1,1,2-TRICHLORO ETHANE nd nd nd nd 1,1,2-TRICHLORO ETHANE nd nd nd nd TRICHLORO ETHENE nd nd nd nd VINYL CHLORIDE nd nd nd nd TRICHLOROFLUOROMETHANE (FR11) nd nd nd nd DICHLORODIFLUOROMETHANE (FR12) nd nd nd nd nd 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) nd nd nd nd nd BENZENE nd nd nd nd nd nd TOLUENE nd nd nd nd nd nd TOLUENE nd nd nd nd nd	TRANS-1,2-DICHLORO ETHENE					nd
TETRACHLORO ETHENE	DICHLOROMETHANE					nd
1,1,1,2-TETRACHLORO ETHANE nd nd nd nd 1,1,1-TRICHLORO ETHANE nd nd nd nd 1,1,1-TRICHLORO ETHANE nd nd nd nd 1,1,2-TRICHLORO ETHANE nd nd nd nd TRICHLORO ETHANE nd nd nd nd TRICHLORO ETHANE nd nd nd nd VINYL CHLORIDE nd nd nd nd TRICHLOROFLUOROMETHANE (FR11) nd nd nd nd DICHLORODIFLUOROMETHANE (FR12) nd nd nd nd 1,1,2-TRICHLOROTRIFLUOROETHANE (FR13) nd nd nd nd BENZENE nd nd nd nd nd ETHYLBENZENE nd nd nd nd nd TOLUENE nd nd nd nd nd TOLUENE nd nd nd nd nd CHLOROMETHANE nd nd nd nd nd CHLOROBENZENE 95%	TETRACHLORO ETHENE					nd
1,1,2,2-TETRACHLORO ETHANE 1,1,1-TRICHLORO ETHANE 1,1,2-TRICHLORO ET	1.1.1.2-TETRACHLORO ETHANE					nd
1,1,1-TRICHLORO ETHANE 1,1,2-TRICHLORO ETHANE 1,1,2-TRICHLORO ETHANE 1,1,2-TRICHLORO ETHANE 1,1,2-TRICHLORO ETHENE 1,1,2-TRICHLORO ETHENE 1,1,2-TRICHLORO ETHENE 1,1,2-TRICHLOROMETHANE (FR11) 1,1,2-TRICHLOROMETHANE (FR12) 1,1,2-TRICHLOROMETHANE (FR12) 1,1,2-TRICHLOROTRIFLUOROMETHANE (FR13) 1,1,2-TRICHLOROTRIFLUOROMETHANE (FR113) 1,1,2-TRICHLOROTRIFLUOROMETHANE (FR113) 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) 1,1,2-TRICHLOROETHANE (FR113) 1,1,2-TRICHLOR						nd
1,1,2-TRICHLORO ETHANE						nd
TRICHLORO ETHENE nd		•				nd
VINYL CHLORIDE nd nd nd nd TRICHLOROFLUOROMETHANE (FR11) nd nd nd nd DICHLORODIFLUOROMETHANE (FR12) nd nd nd nd 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) nd nd nd nd BENZENE nd nd nd nd ETHYLBENZENE nd nd nd nd TOLUENE nd nd nd nd m&p-XYLENES nd nd nd nd O-XYLENE nd nd nd nd CHLOROMETHANE nd nd nd nd SURROGATES 104 nd nd nd UFLUORO BENZENE 95% 107% 99% 99% CHLOROBENZENE 105% 104% 113% 112% 4 BROMOFLUORO BENZENE 88% 92% 95% 0.66%	• •					nd
TRICHLOROFLUOROMETHANE (FR11) INDICHLOROFLUOROMETHANE (FR12) INDICHLORODIFLUOROMETHANE (FR12) INDICHLORODIFLUOROMETHANE (FR12) INDICHLOROTRIFLUOROETHANE (FR113) INDICHLOROTRIFLUOROETHANE (FR113) INDICHLOROMETHANE (FR113) INDICHLOR						nd
DICHLORODIFLUOROMETHANE (FR12) nd nd nd nd 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) nd nd nd nd BENZENE nd nd nd nd ETHYLBENZENE nd nd nd nd TOLUENE nd nd nd nd m&p-XYLENES nd nd nd nd O-XYLENE nd nd nd nd CHLOROMETHANE nd nd nd nd SURROGATES nd nd nd nd 1,4 DIFLUORO BENZENE 95% 107% 99% 99% CHLOROBENZENE 105% 104% 113% 112% 4 BROMOFLUORO BENZENE 88% 92% 95% 106%						nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) nd nd nd nd						nd
BENZENE						nd
### ETHYLBENZENE				·		nd
TOLUENE						nd
M&p-XYLENES						nd
O-XYLENE						nd
CHLOROMETHANE nd nd nd nd SURROGATES 1,4 DIFLUORO BENZENE 95% 107% 99% 99% CHLOROBENZENE 105% 104% 113% 112% 4 BROMOFLUORO BENZENE 88% 92% 95%						nd
SURROGATES 1,4 DIFLUORO BENZENE 95% 107% 99% 99% CHLOROBENZENE 105% 104% 113% 112% 4 BROMOFLUORO BENZENE 88% 92% 95%						nd
CHLOROBENZENE 105% 104% 113% 195% 4 BROMOFLUORO BENZENE 88% 92% 95%		- III	na	na	nd	nd
CHLOROBENZENE 105% 104% 113% 112% 4 BROMOFLUORO BENZENE 88% 92% 95%	1,4 DIFLUORO BENZENE	95%	107%	99%	00%	97%
4 BROMOFLUORO BENZENE 88% 99% 95%	CHLOROBENZENE					
7-	4 BROMOFLUORO BENZENE	88%	92%			110%
ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UG/L-VAPOR FOR EACH COMPOUND	ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.	0 UG/L-VAPOR FOR EACH CO	MPOUND		50/0	93%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981022W1
GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV575-80	VPSV576-80 DUP	VPSV577-95	VPSV578-110	VPSV579-125
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	8:54	9:17	9:38	10:00	10:22
ANALYSIS TIME	08:56	09:18	09:40	10:02	10:24
SAMPLING DEPTH (feet)	80	80	95	110	125
VOLUME WITHDRAWN (cc)	320	320	380	440	500
VOLUME INJECTED	1	1	1	1	1
DILUTION FACTOR	1	1	1	<u> </u>	1
CARBON TETRACHLORIDE	18	20	45	65	74
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	r4 nd
CHLOROFORM	nd	nd	nd	nd	nd nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	· nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	
TETRACHLORO ETHENE	nd	nd	nd	nd	nd d
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd .	nd
TRICHLORO ETHENE	nd	nd	nd		nd
VINYL CHLORIDE	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd		nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	36	37	nd 48	nd 47	nd
BENZENE	nd	nd		47	54
ETHYLBENZENE	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd 	nd	nd
m&p-XYLENES	nd	nd	nd nd	nd	nd
o-XYLENE	nd	nd	nd nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd nd	nd
SURROGATES		nu nu	- IN	nd	nd
1,4 DIFLUORO BENZENE	100%	95%	91%	95%	91%
CHLOROBENZENE	113%	108%	103%	117%	101%
4 BROMOFLUORO BENZENE	92%	91%	87%	91%	87%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981022W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV580-140	VPSV581-155	VPSV582-155 DUP	VPSV583-20	VPSV584-35
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	10:44	11:06	11:28	12:14	12:36
ANALYSIS TIME	. 10:46	11:09	11:31	12:17	12:39
SAMPLING DEPTH (feet)	140	155	155	20	35
VOLUME WITHDRAWN (cc)	560	620	620	80	140
VOLUME INJECTED	1	1	1	1	1
DILUTION FACTOR	1 ·	1	1	1	1
CARBON TETRACHLORIDE	125	59	63		
CHLOROETHANE/BROMOMETHANE	A A			nd	nd
CHLOROFORM	nd d	nd	nd	nd	nd
	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	2.4	2.8	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	64	. 61	68	nd	nd
BENZENE	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd ·	nd	nd
TOLUENE	nd	nd	. nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd
SURROGATES					
1,4 DIFLUORO BENZENE	91%	89%	108%	109%	97%
CHLOROBENZENE	102%	99%	121%	93%	109%
4 BROMOFLUORO BENZENE	86%	85%	104%	79%	94%
ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.					3770

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981022W1
GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV585-50	VPSV586-65	VPSV587-80	VPSV588-80 DUI
DATE	10/22/98	10/22/98	10/22/98	10/22/9
SAMPLING TIME	12:59	13:21	13:43	14:00
ANALYSIS TIME	13:01	13:23	13:45	14:0
SAMPLING DEPTH (feet)	50	65	. 80	8(
VOLUME WITHDRAWN (cc)	200	260	320	320
VOLUME INJECTED	1	1	1	-
DILUTION FACTOR	1	1	11	
CARBON TETRACHLORIDE	nd	4.5	6.1	6.0
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	n
CHLOROFORM	nd	nd	nd	n
1,1-DICHLORO ETHANE	nd ·	nd	nd	n
1,2-DICHLORO ETHANE	nd	nd	nd	- no
1,1-DICHLORO ETHENE	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	no
DICHLOROMETHANE	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	i nd	n
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	n
1,1,1-TRICHLORO ETHANE	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	no
VINYL CHLORIDE	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	no
BENZENE	nd	nd	nd	no
ETHYLBENZENE	nd	nd	nd	no
TOLUENE	nd	nd	· nd	no
m&p-XYLENES	nd	nd	nd	no
o-XYLENE	nd	nd	nd	no
CHLOROMETHANE	nd	nd	nd	no
SURROGATES				
1,4 DIFLUORO BENZENE	113%	95%	89%	96%
CHLOROBENZENE	122%	106%	99%	107%
4 BROMOFLUORO BENZENE	109%	92%	86%	93%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV571-20	VPSV571-20	VPSV572-35	VPSV572-35	VPSV573-50	VPSV573-50
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	5:00	5:00	7:27	7:27	7:48	7:48	8:10	8:10
ANALYSIS TIME	5:01	5:01	7:28	7:28	7:51	7:51	8:12	8:12
SAMPLING DEPTH (feet)			20	20	35	35	50	50
VOLUME WITHDRAWN (cc)	200	200	80	80	140	140	200	200
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1 .	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd.	nd	nd	nd .	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	· nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	10.0	205	9.8	231	9.8	213	9.7	213
CHLOROBENZENE	16.3	517	16.1	511	16.1	556	16.1	550
4 BROMOFLUORO BENZENE	19.4	724	19.1	756	19.1	780	19.1	783
ND INDICATES NOT DETECTED AT A DETECTION	N LIMIT OF 1.0 UG/L-	VAPOR FOR EAC	CH COMPOUND					

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV574-60	VPSV574-60	VPSV575-80	VPSV575-80	VPSV576-80 DUP	VPSV576-80 DUP
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	8;33	8:33	8:54	8:54	9:17	9:17
ANALYSIS TIME	8:34	8:34	8:56	8:56	9:18	9:18
SAMPLING DEPTH (feet)	60	60	80	80 !	80	80
VOLUME WITHDRAWN (cc)	240	240	320	320	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1 -	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.3	2,031	9.3	2,244
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd.
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd .	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	nd	nd	5.3	577	5.3	594
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						1.0
1,4 DIFLUORO BENZENE	9.8	210	9.8	216	9.8	205
CHLOROBENZENE	16.2	540	16.2	555	16.2	529
4 BROMOFLUORO BENZENE	19.2	768	19.2	753	19.2	752
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UG/L-VAPO	OR FOR EACH COMPO				102;

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV577-95	VPSV577-95	VPSV578-110	VPSV578-110	VPSV579-125	VPSV579-125
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	9:38	9:38	10:00	10:00	10:22	10:22
ANALYSIS TIME	9:40	9:40	10:02	10:02	10:24	10:24
SAMPLING DEPTH (feet)	95	95	110	110	125	125
VOLUME WITHDRAWN (cc)	380	380	440	440	500	500
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RŤ	AREA
CARBON TETRACHLORIDE	9.3	4,959	9.3	7,208	9.3	8204
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	- nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nď	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	5.3	770	5.3	768	5.4	870
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	
o-XYLENE	nd	nd	nd	nd	nd	nd nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						110
1,4 DIFLUORO BENZENE	9.9	197	9.8	205	9.9	197
CHLOROBENZENE	16.2	505	16.2	575	16.2	498
4 BROMOFLUORO BENZENE	19.2	718	19.2	752	19.2	718

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV580-140	VPSV580-140	VPSV581-155	VPSV581-155	VPSV582-155 DUP	VPSV582-155 DUP
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	10:44	10:44	11:06	11:06	11:28	11:28
ANALYSIS TIME	10:46	10:46	11:09	11:09	11:31	11:31
SAMPLING DEPTH (feet)	140	140	155	155	155	155
VOLUME WITHDRAWN (cc)	560	560	620	620	620	620
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	13,765	9.3	6,530	9.3	6,942
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	- nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd		nd
1,1,1,2-TETRACHLORO ETHANE	nd	. nd	nd	nd	nd nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd		r nd
1.1.1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.5	39	nd 10.5	nd 45
VINYL CHLORIDE	nd	nd	nd	nd		45
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	5.3	1,041	5.2	989	nd 5.2	nd
BENZENE	nd	nd	nd	nd	. nd	1,096
ETHYLBENZENE	nd	nd	nd	nd	nd nd	nd 1
TOLUENE	nd	nd	nd	nd		nd
m&p-XYLENES	nd	nd	nd	nd	nd t	nd
o-XYLENE	nd	nd	nd	nd nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES		110	nu nu	nu	nd	nd
1,4 DIFLUORO BENZENE	9.9	197	9.8	192	9,9	
CHLOROBENZENE	16.2	503	16.2	192 489		233
4 BROMOFLUORO BENZENE	19.2	711	19.2	701	16.2 19.2	593
ND INDICATES NOT DETECTED AT A DETECTION				701	19.2	855

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV583-20	VPSV583-20	VPSV584-35	VPSV584-35	VPSV585-50	VPSV585-50
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	12:14	12:14	12:36	12:36	12:59	12:59
ANALYSIS TIME	12:17	12:17	12:39	12:39	13:01	13:01
SAMPLING DEPTH (feet)	20	20	35	35	50	50
VOLUME WITHDRAWN (cc)	80	80	140	140	200	200
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	· nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nđ	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd .	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	- nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd:	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	
o-XYLENE	nd	nd	nd	nd	nd ·	nd nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES					. 110	110
1,4 DIFLUORO BENZENE	9.9	235	9.8	210	9.9	243
CHLOROBENZENE	16.2	456	16.2	534	16.2	243 601
4 BROMOFLUORO BENZENE	19.2	652	19.2	772	19.2	898
ND INDICATES NOT DETECTED AT A DETECTION				112	13.4	090

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV586-65	VPSV586-65	VPSV587-80	VPSV587-80	VPSV588-80 DUP	VPSV588-80 DUP
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	13:21	13:21	13:43	13:43	14:06	14:06
ANALYSIS TIME	13:23	13:23	13:45	13:45	14:07	14:07
SAMPLING DEPTH (feet)	65	65	80	80	80	80
VOLUME WITHDRAWN (cc)	260	260	320	320	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	. RT	AREA
CARBON TETRACHLORIDE	9.3	493	9.3	668	9.3	662
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nđ	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	/ nd	nd	nd
1,2-DICHLORO ETHANE	. nd	nd	nd	- nd	nd	nd
1,1-DICHLORO ETHENE	nđ	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd.	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.8	205	9.8	192	9.8	207
CHLOROBENZENE	16.2	523	16.2	487	16.2	527
4 BROMOFLUORO BENZENE	19.2	759	19.2	705	19.2	764
ND INDICATES NOT DETECTED AT A DETECTIO	N LIMIT OF 1.0 UG/L-VAP	OR FOR EACH COM	POUND			

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981022W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV586-65	VPSV586-65	VPSV587-80	VPSV587-80	VPSV588-80 DUP	VPSV588-80 DUP
DATE	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98	10/22/98
SAMPLING TIME	13:21	13:21	13:43	13:43	14:06	14:06
ANALYSIS TIME	13:23	13:23	13:45	13:45	14:07	14:07
SAMPLING DEPTH (feet)	65	65	80	80	80	80
VOLUME WITHDRAWN (cc)	260	260	320	320	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	493	9.3	668	9.3	662
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd .	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	· nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	, nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	- nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nđ	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	. nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.8	205	9.8	192	9.8	. 207
CHLOROBENZENE	16.2	523	16.2	487	16.2	527
4 BROMOFLUORO BENZENE	19.2	759	19.2	705	19.2	764
ND INDICATES NOT DETECTED AT A DETECTION	ON LIMIT OF 1.0 UG/L-V	APOR FOR EACH COM	/POUND			

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981023W1
GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV589-95	VPSV590-108	VPSV591-118	VPSV592-35	VPSV593-55	VPSV594-55 DUP	VPSV595-75	VPSV596-92
DATE	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98
SAMPLING TIME	5:45	7:38	8:00	8:21	9:15	9:40	10:01	10:23	10:46
ANALYSIS TIME	05:49	07:39	08:01	08:23	09:16	09:41	10:04	10:26	10:48
SAMPLING DEPTH (feet)		95	108	118	35	55	55	75	92
VOLUME WITHDRAWN (cc)	200	380	435	475	140	220	220	300	370
VOLUME INJECTED	1	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1	<u> </u>
CARBON TETRACHLORIDE	nd	28	157	154	9.2	17	16	22	20
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	
CHLOROFORM	nd	nd	nd	nd	nd	1.1	1.1	3.8	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd		4.0
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd
1.1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd		nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd		nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd 	nd
TETRACHLORO ETHENE	nd	nd ·	nd nd	nd	nd	nd . nd	nd	nd 	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd		nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd nd	nd	nd	nd nd	nd	nd 	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd 	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd nd	nd		nd	nd	nd	nd
VINYL CHLORIDE	nd	nd			nd t	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd		nd 	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)		nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd 00	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	62	82	nd	nd	nd	31	29
ETHYLBENZENE	nd	nd	nd	nd	nd	nd		nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd
	nd d	nd	nd	nd	nd	nd	nd	กต้	nd
m&p-XYLENES o-XYLENE	nd	nd	nd	nd	nđ	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES	nd	nd	nd	nd	nd	nd	nd	nd	nd
1.4 DIFLUORO BENZENE	40001	0.454	4454		·				
1,4 DIFLUORO BENZENE CHLOROBENZENE	103%	84%	115%	97%	88%	104%	111%	97%	94%
4 BROMOFLUORO BENZENE	105% 89%	102%	123%	108%	99%	109%	123%	107%	105%
ND INDICATES NOT DETECTED AT A DETECTION		86%	100%	90%	84%	94%	108%	95%	93%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981023W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV589-95	VPSV589-95	VPSV590-108	VPSV590-108
DATE	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98
SAMPLING TIME	5:48	5:48	7:38	7:38	8:00	8:00
ANALYSIS TIME	5:49	5:49	7:39	7:39	8:01	8:01
SAMPLING DEPTH (feet)			95	95	108	108
VOLUME WITHDRAWN (cc)	200	200	380	380	435	435
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.4	3,103	9.3	17,346
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	. nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd -	nd	nd .	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	ndi	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd -
TRICHLOROFLUOROMETHANE (FR11)	nd	. nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd ·	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	5.3	1,006
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	10.0	223	9.9	182	9.8	249
CHLOROBENZENE	16.4	517	16.2	502	16.2	607
4 BROMOFLUORO BENZENE	19.4	734	19.3	705	19.3	822
ND INDICATES NOT DETECTED AT A DETECTION LIMIT	OF 1.0 UG/L-VAPOR FOR	EACH COMPOUND	· · · · · · · · · · · · · · · · · · ·			

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981023W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV591-118	VPSV591-118	VPSV592-35	VPSV592-35	VPSV593-55	VPSV593-55
DATE	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98
SAMPLING TIME	8:21	8:21	9:15	9:15	9:40	9:40
ANALYSIS TIME	8:23	8:23	9:16	9:16	9:41	9:41
SAMPLING DEPTH (feet)	118	118	35	35	55	55
VOLUME WITHDRAWN (cc)	475	475	140	140	220	220
VOLUME INJECTED	1	1	1 -	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	16,979	9.3	1,019	9.3	1,865
CHLOROETHANE/BROMOMETHANE	nd .	nd	nd	nd	nd	nd
CHLOROFORM	nd	nđ	nd	nd	8.4	226
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nď	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	. nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	1,329	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	. nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd.
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						110
1,4 DIFLUORO BENZENE	9.8	209	9.8	189	9,9	224
CHLOROBENZENE	16.2	531	16.2	487	16.1	537
4 BROMOFLUORO BENZENE	19.3	743	19.3	692	19.1	771
ND INDICATES NOT DETECTED AT A DETECTION LIM	IIT OF 1.0 UG/L-VAPOR FO	R EACH COMPOUND				

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981023W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV594-55 DUP	VPSV594-55 DUP	VPSV595-75	VPSV595-75	VPSV596-92	VPSV596-92
DATE	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98	10/23/98
SAMPLING TIME	. 10:01	10:01	10:23	10:23	10:46	10:46
ANALYSIS TIME	10:04	10:04	10:26	10:26	10:48	10:48
SAMPLING DEPTH (feet)	55	55	75	75	92	92
VOLUME WITHDRAWN (cc)	220	220	300	300	370	370
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	1,814	9.2	2,466	9.2	2,216
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nđ	nd
CHLOROFORM	8.3	215	8.2	776	8.1	801
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd -	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	. nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	· nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	5.3	498	5.3	466
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.8	240	9.8	209	9.7	204
CHLOROBENZENE	16.1	607	16	528	16	518
4 BROMOFLUORO BENZENE	19	891	19	779	19	761
ND INDICATES NOT DETECTED AT A DETECTION L	IMIT OF 1.0 UG/L-VAPOR I	FOR EACH COMPOUN	D			

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV597-25	VPSV598-40	VPSV599-55	VPSV600-55 DUP	VPSV601-70
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	4:50	7:09	7:30	7:52	8:15	8:37
ANALYSIS TIME	04:53	07:11	07:33	07:55	08:17	08:39
SAMPLING DEPTH (feet)		25	40	55	55	70
VOLUME WITHDRAWN (cc)	200	100	160	220	220	280
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	no
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	no
CHLOROFORM	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nc
1,2-DICHLORO ETHANE	nd	nd	nd	nd .	nd	no
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
DICHLOROMETHANE	nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	
1.1.1-TRICHLORO ETHANE	nd	nd	nd	nd	nd nd	no
1.1.2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd .	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd nd
BENZENE	nd	nd	nd	nd	nd	no
ETHYLBENZENE	nd	nd	nd	nd	nd	
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	no
CHLOROMETHANE	nd	nd	nd	nd	nd	no no
SURROGATES				10	- IId	TIQ.
1,4 DIFLUORO BENZENE	94%	90%	101%	100%	90%	92%
CHLOROBENZENE	105%	101%	112%	111%	101%	103%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION LIMIT	87%	92%	96%	98%	88%	89%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV602-90	VPSV603-135	VPSV604-155	VPSV605-180	VPSV606-180 DUP	VPSV607-195
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	8:58	9:22	9:45	10:05	10:28	10:50
ANALYSIS TIME	09:00	09:23	09:46	10:08	10:29	10:52
SAMPLING DEPTH (feet)	90	135	155	180	180	195
VOLUME WITHDRAWN (cc)	360	540	620	720	720	780
VOLUME INJECTED	1	1	1	1	1	,
DILUTION FACTOR	. 1	1	1	1	1	1
CARBON TETRACHLORIDE	nd	nd	14	110	125	88
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	no
CHLOROFORM	nd	nd	nd	nd	nd	no
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	
1.2-DICHLORO ETHANE	nd	nd	nd	nd nd	nd	no no
1.1-DICHLORO ETHENE	nd	nd	nd	nd nd	nd	
CIS-1,2-DICHLORO ETHENE	nd	nd	nd nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
DICHLOROMETHANE	nd	nd	nd	nd	nd	no no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1.1.1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	4.9	6.4	3.2
VINYL CHLORIDE	nd	nd	nd	nd	nd	3.2 no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	193	144	138	no 193
BENZENE	nd	nd	nd	nd	nd	
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	no
m&p-XYLENES	nd	nd	nd	nd	nd	no
o-XYLENE	nd	nd	nd	nd	nd	no
CHLOROMETHANE	nd	nd	nd	nd	nd	no no
SURROGATES				III III	- IIQ	110
1,4 DIFLUORO BENZENE	100%	98%	97%	96%	83%	99%
CHLOROBENZENE	106%	110%	108%	107%	94%	110%
4 BROMOFLUORO BENZENE	92%	96%	93%	93%	81%	95%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

DATE	VPSV608-25	VPSV609-40	VPSV610-60	VPSV611-80	VPSV612-80 DUP	VPSV613-10
DATE SAMPLING TIME	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/9
ANALYSIS TIME	11:26	12:08	12:32	12:54	13:16	13:3
•	11:27	12:13	12:35	12:57	13:19	13:4
SAMPLING DEPTH (feet)	25	40	60	80	80	10
VOLUME WITHDRAWN (cc)	100	160	240	320	320	4
VOLUME INJECTED	1	1	1	1	1	
DILUTION FACTOR	111	1	1	1	1	
CARBON TETRACHLORIDE	nd	24	43	64	60	
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	. nd	
CHLOROFORM	nd	nd	nd	nd		ı
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd d	•
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd t	ı
1,1-DICHLORO ETHENE	nd	nd	nd	nd nd	nd	r
CIS-1,2-DICHLORO ETHENE	- nd	nd	nd		nd	r
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	r
DICHLOROMETHANE	nd	nd	nd	nd	nd	1
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	ı
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	r
1,1,2,2-TETRACHLORO ETHANE	nd	nd		nd	nd	r
1,1,1-TRICHLORO ETHANE	nd	nd	nd nd	nd	nd	ſ
1,1,2-TRICHLORO ETHANE	· nd	nd		nd	nd	r
TRICHLORO ETHENE	nd	1.2	nd	nd	nd	r
VINYL CHLORIDE	nd	nd	nd d	2.3	2.4	3
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	r
DICHLORODIFLUOROMETHANE (FR12)	nd	==	nd	nd	nd	r
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	r
BENZENE		nd	nd	51	48	
THYLBENZENE	nd 	nd	nd	nd	nd	n
OLUENE	nd 	nd	nd	nd	nd	r
m&p-XYLENES	nd	nđ	nd	nd	nd	r
-XYLENE	nd	nd	nd	nd	nd	r
CHLOROMETHANE	nd	nd	nd	nd	nd	n
SURROGATES	nd	nd	nd	nd	nd	n
,4 DIFLUORO BENZENE	90%	99%	99%	40004		
CHLOROBENZENE	97%	111%		100%	98%	102
BROMOFLUORO BENZENE	86%	83%	110% 96%	112% 98%	120% 98%	1049 919

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV597-25	VPSV597-25	VPSV598-40	VPSV598-40
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	4:50	4:50	7:09	7:09	7:30	7:30
ANALYSIS TIME	4:53	4:53	7:11	7:11	7:33	7:33
SAMPLING DEPTH (feet)			25	25	40	40
VOLUME WITHDRAWN (cc)	200	200	100	100	160	160
VOLUME INJECTED	1 .	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd .	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd ·	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	no
VINYL CHLORIDE	nd	nd	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	10.0	204	9.6	195	10.0	219
CHLOROBENZENE	16.4	517	15.9	498	16.2	552
4 BROMOFLUORO BENZENE	19.4	712	19.0	759	19.2	792
ND INDICATES NOT DETECTED AT A DETECTION LIMIT	FOF 1.0 UG/L-VAPOR FOR	REACH COMPOUND				

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV599-55	VPSV599-55	VPSV600-55 DUP	VPSV600-55 DUP	VPSV601-70	VPSV601-70
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	7:52	7:52	8:15	8:15	8:37	8:37
ANALYSIS TIME	7:55	7:55	8:17	8:17	8:39	8:39
SAMPLING DEPTH (feet)	55	55	55	55	70	70
VOLUME WITHDRAWN (cc)	220	220	220	220	280	280
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	· nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	. nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	· nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	· nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	. nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.9	216	9.9	195	9.8	198
CHLOROBENZENE	16.2	546	16.2	497	16.2	507
4 BROMOFLUORO BENZENE	19.2	805	19.2	720	19.2	732
ND INDICATES NOT DETECTED AT A DETECTION LI	MIT OF 1.0 UG/L-VAPOR F	OR EACH COMPOU	ND			

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981026W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

VPSV602-90	VPSV602-90	VPSV603-135	VPSV603-135	VPSV604-155	VPSV604-155
10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
8:58	8:58	9:22	9:22	9:45	9:45
9:00	9:00	9:23	9:23	9:46	9:46
90	90	135	135	155	155
360	360	540	540		620
1	1	1	1	1	1
1 ·	1	1	1	1	1
RT	AREA	RT	AREA	RT	AREA
nd	nd	nd	nd	9.4	1,576
nd	nd	nd	nd		nd
nd	nd	nd	nd		nd
nd	nd	nd	nd		nd
, nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nđ	nd	nd		nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd ·			nd
nd	nd	nd			nd
nd	nd	nd			nd
nd					nd
nd					nd
nd					nd
					nd
nd	nd	nd			3,129
nd	nd	nd			nd
nd	nd		· · · · · · · · · · · · · · · · · · ·		nd
nd					nd
nd					nd
nd	nd	nd			nd
nd	nd	nd			nd
	· · · · · · · · · · · · · · · · · · ·				110
9.8	217	9.9	212	9.9	209
16.2	523	16.2			531
19.2	753	19.2	786	19.2	766
	10/26/98 8:58 9:00 90 360 1 1 1 RT nd	10/26/98 8:58 9:00 90 90 90 360 1 1 1 1 1 1 RT AREA nd	10/26/98 8:58 8:58 9:00 9:00 9:00 9:23 90 90 360 360 540 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/26/98 10/26/98 10/26/98 10/26/98 8:58 8:58 9:22 9:22 9:22 9:00 9:00 9:00 9:23 9:23 9:23 9:00 90 135 135 35 35 360 360 540 540 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/26/98 10/26/98 10/26/98 10/26/98 10/26/98 8:58 8:58 9:22 9:22 9:45 9:00 9:00 9:00 9:23 9:23 9:23 9:46 90 90 135 135 155 360 360 540 540 620 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981026W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV605-180	VPSV605-180	VPSV606-180 DUP	VPSV606-180 DUP	VPSV607-195	VPSV607-195
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	10:05	10:05	10:28	10:28	10:50	10:50
ANALYSIS TIME	10:08	10:08	10:29	10:29	10:52	10:52
SAMPLING DEPTH (feet)	180	180	180	180	195	195
VOLUME WITHDRAWN (cc)	720	720	720	720	780	780
VOLUME INJECTED	1	1	1	1 !	1	1
ILUTION FACTOR	1	1	1	1	1	i 1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	12,172	9.3	13,794	9.4	9,719
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.5	78	10.5	103	10.6	51
VINYL CHLORIDE	nd	nd	nd	nd	nd	
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd		nd
DICHLORODIFLUOROMETHANE (FR12)	nd nd	nd	nd nd	nd	nd 	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	2,340	5.2	2,242	nd 5.3	nd
BENZENE	nd	nd nd	nd	2,242 nd		3,129
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd nd		nd 	nd
m&p-XYLENES	nd	nd	nd	nd	nd 1	nd
o-XYLENE	nd	nd	nd	nd nd	nd nd	nd
CHLOROMETHANE	nd	nd	nd	nd		nd
SURROGATES		110	ng .	110	nd	nd
1.4 DIFLUORO BENZENE	9.9	208	9.9	180	9.9	04.4
CHLOROBENZENE	16.2	528	16.2	461	9.9 16.2	214
4 BROMOFLUORO BENZENE	19.2	766	19.2	668	19.3	540
ND INDICATES NOT DETECTED AT A DETECTION LIN				000	19.3	783

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

	VPSV608-25	VPSV608-25	VPSV609-40	VPSV609-40	VPSV610-60	VPSV610-60
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	11:26	11:26	12:08	12:08	12:32	12:32
ANALYSIS TIME	11:27	11:27	12:13	12:13	12:35	12:35
SAMPLING DEPTH (feet)	25	25	40	40	60	60
VOLUME WITHDRAWN (cc)	100	100	160	160	240	240
VOLUME INJECTED	1	1	1	1	1	1
LUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.4	2,628	9.3	4,716
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nđ	nd	nd	nd	nd .	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	. nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	. nd	nd	
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.6	19		nd 1
VINYL CHLORIDE	nd	nd	nd	nd	nd nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd		nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd
BENZENE	nd			nd	nd	nd
ETHYLBENZENE	nd ·	nd nd	nd	nd	nd	nd
TOLUENE	nd		nd	nd	nd	nd
m&p-XYLENES	nd	ņd d	nd	nd	nd	nd
o-XYLENE	nd	nd	nd 	nd	nd	nd
CHLOROMETHANE	nd	nd	nd nd	nd	nd nd	nd
SURROGATES	IIU .	nd	nd	nd	nd	nd
1,4 DIFLUORO BENZENE	9.9	195	40.0			
CHLOROBENZENE	16.1	479	10.0	213	9.8	213
4 BROMOFLUORO BENZENE	19.1	703	16.2	545	16.1	540
ND INDICATES NOT DETECTED AT A DETECTION LIM			19.3	683	19.1	788

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981026W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV611-80	VPSV611-80	VPSV612-80 DUP	VPSV612-80 DUP	VPSV613-100	VPSV613-100
DATE	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98	10/26/98
SAMPLING TIME	16:54	12:54	13:16	13:16	13:38	13:38
ANALYSIS TIME	12:57	12:57	13:19	13:19	13:41	13:41
SAMPLING DEPTH (feet)	80	80	80	80	100	100
VOLUME WITHDRAWN (cc)	320	320	320	320	400	400
VOLUME INJECTED	1	1	1	1	1	1
ILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.2	7,039	9.2	6,612	9.3	6,801
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	ndi	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.4	37	10.4	38	10.5	57
VINYL CHLORIDE	nd	nd	nd	nd	nd	:
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	822	5.3	770	5.4	nd
BENZENE	nd	nd	nd	nd		922
ETHYLBENZENE	nd	nd	nd	· nd	nd 	nd
TOLUENE	nd	nd	nd		nd	nd
m&p-XYLENES	nd	nd		nd 	nd	nd
o-XYLENE	nd	nd	nd nd	nd 	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES	- IIQ		na	nd	nd	nd
1.4 DIFLUORO BENZENE	9.8	217	9.8	040		
CHLOROBENZENE	16.1	550	9.6 16.1	212	9.9	221
4 BROMOFLUORO BENZENE	19.1	805	19.1	589	16.2	512
ND INDICATES NOT DETECTED AT A DETECTION LIM				802	19.2	751

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981027W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV614-120	VPSV615-140	VPSV616-155	VPSV617-170	VPSV618-185
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	4:45	7:13	7:36	7:58	8:21	8:42
ANALYSIS TIME	04:49	07:15	07:37	07:59	08:22	08:44
SAMPLING DEPTH (feet)		120	140	155	170	185
VOLUME WITHDRAWN (cc)	200	480	560	620	680	740
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
CARBON TETRACHLORIDE	nd	32	30	26	23	12
CHLOROETHANE/BROMOMETHANE	nd	nd	nd -	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	· nd	nd	nd	nď	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	. nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd .	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	6.1	4.5	2.3	3.0	2.2
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	37	47	38	6.5
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
D-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	89%	80%	105%	84%	83%	103%
CHLOROBENZENE	100%	91%	110%	103%	90%	113%
4 BROMOFLUORO BENZENE	90%	79%	91%	89%	78%	99%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
SOIL VAPOR DATA IN UG/L-VAPOR

	VPSV619-185 DUP	VPSV620-25	VPSV621-45	VPSV622-65	VPSV623-80	VPSV624-80 DUP
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	9:04	9:40	10:02	10:26	10:47	11:11
ANALYSIS TIME	09:07	09:41	10:03	10:26	10:48	11:12
SAMPLING DEPTH (feet)	185	25	45	65	80	80
VOLUME WITHDRAWN (cc)	740	100	180	260	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
CARBON TETRACHLORIDE	12	nd	5.6	15	11	15
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	no
1.1-DICHLORO ETHENE	nd	nd ·	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1.2-DICHLORO ETHENE	nd	nd	nd	nd	nd	. nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	no no
TRICHLORO ETHENE	1.7	nd	nd	2.2	1.6	2.1
VINYL CHLORIDE	nd	nd	nd	nd	nd	
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	6.8	nd	nd	57	74	nd 56
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	99%	97%	93%	89%	86%	80%
CHLOROBENZENE	110%	107%	104%	99%	94%	89%
4 BROMOFLUORO BENZENE	95%	92%	90%			77%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION LI	95%	92%		86% 86%		94% 83%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBOI

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

VPSV625-110	VPSV626-125	VPSV627-140	VPSV628-155	VPSV629-170	VPSV630-170 DUP
10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
	12:17	12:40	13:02	13:25	13:48
11:34	12:19	12:42	13:04	13:26	13:49
110	125	140	155	170	170
440	500	560	620	680	680
1	1	1	1	1	1
1	1	1	1	1	1
13	18	18	17	22	24
nd	nd				nd
					nd
nd					nd
nd					nd nd
nd					nd
nd					nd
nd					nd
nd					nd
nd					nd
nd					nd
nd					nd
nd	nd	nd			nd
nd	nd	nd			nd
1.4	1.8				3.4
nd					nd
nd					nd
					nd .
43	81	67	75		112
nd	nd	nd	nd		nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd			nd
	 				710
92%	101%	97%	97%	97%	94%
103%	104%				106%
89%	90%	94%			92%
	10/27/98 11:32 11:34 110 440 1 1 1 13 13 14 10 10 11 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	10/27/98 11:32 12:17 11:34 12:19 110 125 440 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10/27/98	10/27/98	10/27/98 10/27/98 10/27/98 10/27/98 10/27/98 11:32 12:17 12:40 13:02 13:25 11:34 12:19 12:42 13:04 13:26 110 125 140 155 170 440 500 560 620 680 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV614-120	VPSV614-120	VPSV615-140	VPSV615-140
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	4:45	4:45	7:13	7:13	7:36	7:36
ANALYSIS TIME	4:49	4:49	7:15	7:15	7:37	7:37
SAMPLING DEPTH (feet)			120	120	140	140
VOLUME WITHDRAWN (∞)	200	200	480	480	560	560
VOLUME INJECTED	1	1	1	. 1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREĀ
CARBON TETRACHLORIDE	nd	nd	9.3	3,528	9.3	3,297
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	. nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.5	98	10.5	72
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	5.3	597
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	10.0	192	9.9	173	9.8	226
CHLOROBENZENE	16.3	490	16,1	447	16.1	543
4 BROMOFLUORO BENZENE	19.3	73 7	19.0	649	19.0	752
ND INDICATES NOT DETECTED AT A DETECTION LIM	IT OF 1.0 UG/L-VAPOR FOR	EACH COMPOUND				102

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV616-155	VPSV616-155	VPSV617-170	VPSV617-170	VPSV618-185	VPSV618-185
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	7:58	7:58	8:21	8:21	8:42	8:42
ANALYSIS TIME	7:59	7:59	8:22	8:22	8:44	8:44
SAMPLING DEPTH (feet)	155	155	170	170	185	185
VOLUME WITHDRAWN (cc)	620	620	680	680	740	740
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.2	2,857	9.5	2,500	9.3	1,325
CHLOROETHANE/BROMOMETHANE	nd	nd	. nd	nd	nd .	nd
CHLOROFORM	nd	nd	nd	nd	. nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	· nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	· nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nď
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1.1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.5	37	10.7	49	10.4	35
VINYL CHLORIDE	nd	nd	nd .	nd	nd	nd nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	769	5.5	620	5.3	106
BENZENE	nd	nd	nd	nd	nd	
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd nd	nd	nd		nd
o-XYLENE	nd	nd	nd	nd nd	nd nd	nd
CHLOROMETHANE	nd	nd	nd	nd		nd
SURROGATES		IIQ	- IIQ	no	nd	nd
1.4 DIFLUORO BENZENE	9.8	182	10.0	179		222
CHLOROBENZENE	16.1	505	16.2	179 442	9.8	222
4 BROMOFLUORO BENZENE	19.0	729	19.2	442 642	16.1	556
ND INDICATES NOT DETECTED AT A DETECTION LIN				042	19.1	811

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV619-185 DUP	VPSV619-185 DUP	VPSV620-25	VPSV620-25	VPSV621-45	VPSV621-45
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	9:04	9:04	9:40	9:40	10:02	10:02
ANALYSIS TIME	9:07	9:07	9:41	9:41	10:03	10:03
SAMPLING DEPTH (feet)	185	185	25	25	45	45
VOLUME WITHDRAWN (cc)	740	740	100	100	180	180
VOLUME INJECTED	1	1	1	1	1	1
LUTION FACTOR	1	1	1	1	1	· 1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	1,339	nd	nd	9.3	620
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	i nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd nd	nd	. nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd		nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd		nd .	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.6	27	nd nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd		nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.4	109	nd	nd	nd	nd
BENZENE			nd	nd	nd	nd
ETHYLBENZENE	nd nd	nd	nd	nd	nd	nd
TOLUENE	i no	nd 	nd	nd	nd	nd
m&p-XYLENES	!	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES	nd	nd	nd	nd	nd	nd
1,4 DIFLUORO BENZENE						
CHLOROBENZENE	9.9	213	9.9	209	9.8	201
4 BROMOFLUORO BENZENE	16.2	539	16.2	525	16.1	511
ND INDICATES NOT DETECTED AT A DETECTION I	19.2	783	19.2	754	19.1	740

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745) ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV622-65	VPSV622-65	VPSV623-80	VPSV623-80	VPSV624-80 DUP	VPSV624-80 DUF
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	10:26	10:26	10:47	10:47	11:11	- 11:11
ANALYSIS TIME	10:26	10:26	10:48	10:48	11:12	11:12
SAMPLING DEPTH (feet)	65	65	80	80	80	80
VOLUME WITHDRAWN (cc)	260	260	320	320	320	320
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.4	1,662	9.3	1,202	9.4	1,602
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	no
CHLOROFORM	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd ·	nd	nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nc
DICHLOROMETHANE	nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
TRICHLORO ETHENE	10.6	36	10.5	26	10.6	33
VINYL CHLORIDE	nd	nd	nd	nd	nd	
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.4	927	5.3	1,205	5.4	no 911
BENZENE	nd	nd	nd	nd	nd	no
ETHYLBENZENE	nd	nd	nd	nd	nd	no
TOLUENE	nd	nd	nd	nd	nd nd	no
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd .	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES				770	10	110
1,4 DIFLUORO BENZENE	9.9	192	9.8	185	9.9	173
CHLOROBENZENE	16.2	487	16.2	461	16.2	437
4 BROMOFLUORO BENZENE	19.2	705	19.2	683	19.2	631
ND INDICATES NOT DETECTED AT A DETECTION LIN					10.2	031

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV625-110	VPSV625-110	VPSV626-125	VPSV626-125	VPSV627-140	VPSV627-140
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	11:32	11:32	12:17	12:17	12:40	12:40
ANALYSIS TIME	11:34	11:34	12:19	12:19	12:42	12:42
SAMPLING DEPTH (feet)	110	110	125	125	140	140
VOLUME WITHDRAWN (cc)	440	440	500	500	560	560
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	1,471	9.4	2,025	9.4	1,982
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nđ	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	· nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	
1,1,1-TRICHLORO ETHANE	nd	. nd	nd	nd	nd	nd d
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd		nd
TRICHLORO ETHENE	10.5	22	10.6	29	nd 10.6	nd
VINYL CHLORIDE	nd	nd	nd	nd nd		30
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd		nd 	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd 	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.3	698	5.3	nd 1,317	nd	nd
BENZENE	nd	nd			5.3	1,089
ETHYLBENZENE	nd	nd	nd nd	nd	nd	nd
TOLUENE	nd	nd	nd nd	nd	nd	nd
m&p-XYLENES	nd	nd		nd	nd	nd
o-XYLENE	nd	nd nd	nd nd	nd	nd.	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES	no	TIQ	110	nd	nd	nd
1.4 DIFLUORO BENZENE	9.8	199	9.9	240		
CHLOROBENZENE	16.2	505	9.9 16.2	219	9.9	209
4 BROMOFLUORO BENZENE	19.2	732	19.2	511	16.2	556
ND INDICATES NOT DETECTED AT A DETECTION LIN			19.2	739	19.2	770

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981027W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV628-155	VPSV628-155	VPSV629-170	VPSV629-170	VPSV630-170 DUP	VPSV630-170 DUP
DATE	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98	10/27/98
SAMPLING TIME	13:02	13:02	13:25	13:25	13:48	13:48
ANALYSIS TIME	13:04	13:04	13:26	13:26	13:49	13:49
SAMPLING DEPTH (feet)	155	155	170	170	170	170
VOLUME WITHDRAWN (cc)	620	620	680	680	680	680
VOLUME INJECTED	1	1	. 1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	1,892	9.3	2,419	9.4	2,597
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.5	29	10.5	48	10.6	54
VINYL CHLORIDE	nd	nd .	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.2	1,209	5.2	1,669	5.3	1,806
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nđ	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.8	209	9.8	210	9.9	204
CHLOROBENZENE	16.2	517	16.2	536	16.2	520
4 BROMOFLUORO BENZENE	19.2	748	19.2	778	19.2	753
ND INDICATES NOT DETECTED AT A DETECTION LIM	IT OF 1.0 UG/L-VAPOR FO	OR EACH COMPOUND				

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981028W1

GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR

	BLANK	VPSV631-20	VPSV632-35	VPSV633-50	VPSV634-70	VPSV635-85
DATE	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98
SAMPLING TIME	4:55	7:27	7:48	8:09	8:31	8:53
ANALYSIS TIME	04:58	07:27	07:49	08:10	08:32	08:54
SAMPLING DEPTH (feet)	**	20	35	/50	70	85
VOLUME WITHDRAWN (cc)	200	80	140	200	280	340
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	11	1	1
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	3.7
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	- nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nđ	nd
1.2-DICHLORO ETHANE	nd	nd	nd	nd	· nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	no
DICHLOROMETHANE	nd	nd	nd	nd	nd	nc
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nc
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	no
1.1.1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	nd .	nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	nd	nd	1.5
VINYL CHLORIDE	nd	nd	. nd	nd	nd	กด
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	- nd	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	66
BENZENE	nd	nd	nd	nd	nd	no
ETHYLBENZENE	nd	nd	nd	nd	nd	no
TOLUENE	nd	nd	nd	nd	' nd	no
m&p-XYLENES	nd	nd	nd	nd	nd	no
o-XYLENE	nd	nd	nd	nd	nd	no
CHLOROMETHANE	nd	nd	nd	nd	nd	กเ
SURROGATES						
1,4 DIFLUORO BENZENE	90%	81%	76%	99%	84%	86%
CHLOROBENZENE	99%	99%	93%	106%	97%	96%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF	88%	93%	80%	85%	84%	83%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

TEG Project #981028W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	BLANK	BLANK	VPSV631-20	VPSV631-20	VPSV632-35	VPSV632-35	VPSV633-50	VPSV633-50
DATE	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98
SAMPLING TIME	4:55	4:55	7:27	7:27	7:48	7:48	8:09	8:09
ANALYSIS TIME	4:58	4:58	7:27	7:27	7:49	7:49	8:10	8:10
SAMPLING DEPTH (feet)	-		20	20	35	35	50	50
VOLUME WITHDRAWN (cc)	200	200	80	80	140	140	200	200
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	. 1	1
	RT	AREA	ŔŤ	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	. nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nđ	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nđ	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nđ	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	9.8	194	9.8	174	9.8	164	9.8	214
CHLOROBENZENE	16.1	487	16.1	488	16.1	459	16.1	522
4 BROMOFLUORO BENZENE	19.0	727	18.9	761	19.1	655	19.2	699

ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UG/L-VAPOR FOR EACH COMPOUND

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981028W1
GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR

AREA COUNTS

	VPSV634-70	VPSV634-70	VPSV635-85	VPSV635-85	VPSV636-85 DUP	VPSV636-85 DUP	VPSV637-100	VPSV637-100
DATE	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98
SAMPLING TIME	8:31	8:31	8:53	8:53	9:15	9:15	9:37	9:37
ANALYSIS TIME	8:32	8:32	8:54	8:54	9:16	9:16	9:37	9:37
SAMPLING DEPTH (feet)	70	70	85	85	85	85	100	100
VOLUME WITHDRAWN (cc)	280	280	340	340	340	340	400	400
VOLUME INJECTED	1	1 .	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.4	407	9.4	429	9.3	873
CHLOROETHANE/BROMOMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd '	nd	nd	nd	nd
1.2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1.1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nđ
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1.1.2.2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1.1.2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	10.5	24	10.5	26	10.5	53
VINYL CHLORIDE	. nd	nd	nd	nd nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	5.3	1,067	5.2	1,266	5.3	1,253
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								*****
1.4 DIFLUORO BENZENE	9.8	181	9.8	186	9.8	190	9.8	185
CHLOROBENZENE	16.1	477	16.2	473	16.2	481	16.2	473
4 BROMOFLUORO BENZENE	19.2	692	19.2	680		699	19.2	677

ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UG/L-VAPOR FOR EACH COMPOUND

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981028W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8010/8020) ANALYSES OF SOIL VAPOR
AREA COUNTS

	VPSV638-110	VPSV638-110	VPSV639-120	VPSV639-120	VPSV640-130	VPSV640-130
DATE	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98	10/28/98
SAMPLING TIME	9:59	9:59	10:20	10:20	10:42	10:42
ANALYSIS TIME	9:59	9:59	10:21	10:21	10:43	10:43
SAMPLING DEPTH (feet)	110	110	120	120	130	130
VOLUME WITHDRAWN (cc)	440	440	480	480	520	520
VOLUME INJECTED	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9,4	1,083	9.4	720	9.4	680
CHLOROETHANE/BROMOMETHANE	nd	nd '	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	ndi	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nđ	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.5	76	10.5	164	10.6	243
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.4	1,081	5.4	813	5.3	812
BENZENE	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd
CHLOROMETHANE	nd	nd	nd	nd	nd	nd
SURROGATES						
1,4 DIFLUORO BENZENE	9.9	184	9.9	183	9.9	199
CHLOROBENZENE	16.2	472	16.3	449	16.2	480
4 BROMOFLUORO BENZENE	19.3	678	19.3	672	19.3	685
ND INDICATES NOT DETECTED AT A DETECTION I	LIMIT OF 1.0 UG/L-VAPO	OR FOR EACH COMP				000

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

APPENDIX B-2 CHAIN-OF-CUSTODY FORMS

Chain of tody Record

ransglobal Environmental Geochemistry 432 N. Cedros Ávenue Solana Beach, CA 92075 (610) 793-0401 Fax: (619) 793-0404

TEG Project#:	981019W1	`	
Outside Lah:			

		Fax: (c	19) 1											te: _		<u></u>	110	2/							P:	age (′ OfZ	
Client: Foster C	U/ree	ec_						-					Cli	ant l	Droi	act	#·	سب سرار	<u> </u>	.0	26	3	Pro	oiec			6. Randa	
Address: 6/1 Ant	onB	lod.	Suit.	<u> </u>	0			-														en						
Costa N	<u>lesa</u>	- CA	- <i>72</i>		/	4 ~~~		-					C0	llaci	or.	-	7/		D	يسيد. تدرد	/ / 4	1	Da	ate	of C	Collection:	10/19/98	
Phone: 2/4/444	-5X2	<u> </u>	Fax:	414/	44	4-556	2	_						nec.	 T			7			7					•		-
											·														ļ			
								(diesel)																		Sign
								(gasoline)	(ləs	৩	EX)	BE)		8			0											Total # of containers
								(gas	(die	(gas	8020 (BTEX	(§	5	3's 8		3270	/827	ead	_						1	İ		00
	٠				- 1		8010	8015	015	015	3020	3020	418	/PCI	8260	\$	8310	ic L	Lead	S		-						#
				Sam		Container	VOA	трн 8	TPH 8015 (diesel)	TPH 8015 (gas	VOA.	VOA 8020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	VOC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals						Field Notes		Tota
Sample #	Depth	Time	Date	Tyr		Type	17	┝	-	一	Ż	1	_	-				Ť	<u>-</u>			\dashv				Purge Vo	lume in cc.	<u>:</u>
Blank		0839	10/1	9 Vage	2/-	Syringe		1	\vdash		X	1														7	80	
VP5V-523	20	0900	┝╌┼╴				K	╀	\vdash	Ι.	K	1										\neg					160	
VP5y - 524	40	0924		mele		#3 plu		1		Ì.,,		ر ر ر ما			6	lows												·
	60		M >	zuple!	- 4	2 plu		7		400	X			81	-												340	
UPSV - 525	85	7	100	_		#5 plug		1				ررما		2	11	ow.												
	100	1009	NOS	anyle	- 14	-3 purg	aca X	1	1	701	X	7		<u> </u>						T					İ		480	
UPSV - 526	120	1012	++				仅	1	†	1	K	1		1													580	
VPSV-527		1034	T }	_			K	十	1	†	X	1															580	
VPSV-528 Oug.	165	1056	++				K	1	†	1	X	1	Π	1						T							660	
VP5V-529	 		╂┷┼	_			仅	十	十	†	X	1	T	T													720	
VPSV - 530	180		+		 	 	K		\top	十	K	*	T		1		Γ										760	
VPSV - 531	190			511	- 75	#/ plugge	少.	راد	رر ا		410	ok_	dr	410	· O.		Π											4
	35			RAVIE	- 140	PILLAGE	1>		THE !	7	X				Τ										<u> </u>		140	
VASV_ 532				_	 	1 1	15	1	\top	T	\times														<u> </u>		220	
VPSV - 533 Relinquished by: (signatu	55 ire)	1251 Date /		Receive	d by:	(signature)	. 16				e/J											taine		_		Notes:		
	1	inhala	//	~^^ <	20	The	4		- /2	15 2-1	19.	ر چه	4			С	hain			-		Y/N/ Y/N/		-		-		
Relinquished by: (signature)	M .	10/19/98 Date/	// /S Time	-		(signature)			ı	Dat	e/T	ime	4				Ren					ion/c		-		-		
Reiniquistied by. (signate	,				•												, ,,,,,	J. 7 C	- 90					L		7		
													ٔ ل	7	Turr	ı ar	oun	d ti	me	:								
		TEA	Dianas	A 62 0	n eerl	n Reti	ırn to	clie	ent		Pi	ckup																

Teg

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404 Chain of stody Record

EG Project #:_	981019W/	
outside Lab:		

Client: Foster Address: GILF Phone: 214/444	11//	ler Blue		to 800	-5560							Dat Clie Loc	e: _ ent l	Proj on: ,	10 ect	119 #: 191	15	98 71 F	.O.	26 ede	3 enc	_ P	roje	Pect M	age Manag	ger: <u>Z</u>	10/	0f_2 Pando 19/98	_ - -
Phone: <u>714/444</u>	2-552		raxZ	Sample	Container	VOA 8010	(əı	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)		TRPH 418.1						Total Lead								l Notes			Total # of containers
Sample #	Depth	Time	Date	Туре	Туре		上	F	F	Ž	<u>ځ</u>	F	ā	Š	Š	<u>-</u>	0	۲	≥				-	-	 			cc:22	_
VPSV-534 (Dup.)		1314	10/19	Vapor	Syringe	\bigotimes	╁-	├_	-	A		-						-	\vdash	-			┢	-	TVOI.	parg		20	1
VPSV-535	80	1358					╀─	-	-	X				/	-			-	-	-			_	 	\vdash			_	+
	100	1423	No Sen	ple-Tip	\$5 plugg	4	عبإ	20	101	3	119	-0	<i>[</i> 2	Vou	2			-	├	-				 	1		<u>A</u>	60	1
VPSV-536	115	1425	1			$+\times$	+-	╀	├—	K				-	-			-	-	 	ļ	_	-	 	+			60	\top
UPSV-537	140	1448	4	1	1	X	+-	┼-	╀					╁			-	├	╁		-	-	 		1				+
		<u> </u>			<u> </u>	-	┼	╄-	┼	$\left \cdot \right $			-	\vdash	-	_		\vdash		╁╌	\vdash		╫	+-	+-				\top
			ļ		<u> </u>	+	+	+-	╀	-		-	-	╂	├	-	-	-	+-	┝	├	 	┢	╁	╁──				+
				ļ	<u> </u>	┼	┼	┼	-	-		├	-	\vdash	├	├	\vdash	-	+-	-	├-	╂─	-	╁	+-				十
						┼-	-	╄	╀	-	_	_	├	╂	├	├	_	-	╀	╀	-		┼╴	┼	-				+
						4	_	—	╁	-	_	-	-	╀	╄	├	├-	╁	+	┼-	┼	-	╁	┼╌	+				+
		1					-	-	_		_	-	-	+	┼	-	├-	┼	+	+	-	 	+	+	+				+
						_		4-	 	-	_	_	_	+	-	-	 	-	+	+-	+	-	╁	+	+				+
						\bot	1		_	-	_	-	 	\bot	+	 	-	┼-	+	-	\vdash	-	+	+-					+
							4	_	\bot	↓_	<u> </u>	-	_	\bot	\vdash		╀	+	+-	+	+-	-	+	+-					+
							丄		Ţ	<u></u>	_	_	<u> </u>	_			<u> </u>	<u></u>		<u> </u>		<u> </u>	+		Not	es:			
Relinquished by: (signature) Han Landsoft Relinquished by: (signature)	L 10/1	Date / /9/98// Date /	150	Received by: Received by:	Mil			- 1	15	e / Ti	0 8	-			c		of C	Custo Sea	ody s Is int	eals	ntain Y/N Y/N tion/	/NA /NA				- • •			
				0.00.00		um ti	lie			Pic			٦	Furi	n ar	oun	d t	ime	:						<u></u>				

(sglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

andy Record Chain of 👍

Outside Lab:

Client: Foster Wheeler									Dat	te: _		101	120	2/	98					Page Of	
Address: Gll Anton Bl	and Sees	2 800	,						Clie	ent F	^o roj	ect	#: .	15	72	02	63	_ P	roject	t Manager: <u>B. G. Rand</u>	dalah
Costa Mesa	14 9	1616							Loc	catio	n: _		IPL	<u>_</u> -	P	saa	lens		cut_		
Phone: 2/4/444 -5527	Fay: '	TIA JAAA	L5560													oleh			ate of	f Collection: 10/20/5	8
Phone: 7/4/444 -3 3 2/	1 a^			一	Τ_				Т	Т	- T	Т	Т	T	П	Ť	\top	Γ			
				Ì		-				l											
·					<u> </u>	diesel)															Jers
					TPH 8015 (gasoune) TPH 8015 (diesel)	88	VOA 8020 (BTEX)	VOA 8020 (MTBE)		PEST/PCB's 8080			2								Total # of containers
					g g	TPH 8015 (gas	(B)	3	8.1	B's	٥	Semi Vol 8270	PNA 8310/8270	Organic Lead	모						o to
				8010	801	8	88	802	± 4	TPC	VOC 8260	N N	831	anic	Total Lead	als					# 10
D. 11	ime Date	Sample Type	Container Type	§ S	된	I E	Ş	Š	쮼	PES	Š	Sen	NA	ő	Tota	Metals				Field Notes	<u> </u>
Cample "	5/2 10/20		Syringe			1	X													Vdame Perged in ce	21
	7 10/20	Vapor	77/196	X	1	1	X													640	
	819	`		X			X											<u> </u>		720	_
<u> </u>				X		1	X													780	
V/2 · · · · · · · · · · · · · · · · · · ·	842	+-+-		X			X													780	_
1731-24. 611	905			X	1	+	X	1												80	
	928	+ + -	1 2 ant		1,, 00	1		Les.	6	2002	6	ect	Ma	uel		uge					
		aupa -	no 2 aug	M	7		X								,					240	
VI CI C	950			X			X	1												340	
V/3/-3-1-	012	+	+	X	1	十	X	1												400	
VP3 4 - 2 - 3		+-+-		M	_	十	X	1												400	
11000 0 14 (22)	1126	+	+	X	_	1	X			Π								\perp		480	
W/21-2-1		+	+	K		十	X											L		560	
	144		+	X		十	\mathbf{x}	1												640	
V/3V-3-7	206		-	X		十	X	1			Τ									720	
	/250 ¥	Received by:	(signature)	_1/1		Da	te / T	ime								1 # of				Notes:	
Reiniquisited	1 11		Alle		/,	55 0-2	7 0-	9K				C	hain			dy se					
the tandeph 10/20	198 11 1350	Received by	(signature)				te / T		-				D			ls inta					
Relinquished by: (signature)	Data Time	Received by	, (Signature)										Kec	eive	a go	od cor	iuition	/ CO10	<u> </u>		
				· · · · · ·						7	Turr	are	oun	ıd ti	me	:					
Sample disposal instructions:	TEG Disposa	1 @ \$2.00 eac	chRetu	rn to c	client		_ Pic	ckup	_												

Teg

...sglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

ain of 🌈	٦dy	Record
----------	-----	--------

EG Project#:	981020W1	
outside Lab:		

Client: Foster V	Klack	av-								<u> </u>		Dat	te: _			0/	120	/5	8					_ Pa	age	of 2	
Address: 611 An	ton E	Hody	Suite	800																						6. Randal	<u>e</u> h
Costa	Mesa	, ca	9262	6			_					Loc	catio	on: .	_	<u> </u>	<u> </u>	<u> </u>	<u>asc</u>	edi	ena			-4.0	Sallastian:	10/20/98	
Address: 611 Am Costa / Phone: 214/444-3	5527		Fax: _7	14/444	-5560		<u>-</u>					Co	llect	tor:	5.	6.	<i>K</i>	av	da	John T	<u>-</u> T		ate	or C	Jollection	10/20/78	-
						010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	1260	Semi Vol 8270	1310/8270	Organic Lead	ead	6		-						Total # of containers
				Sample	Container	8 AO	PH 8	PH 8	PH 8	8 40	Ø Ø	RPH	EST.	VOC 8260	Semi	AN.	Organ	Total Lead	Metals						Field Notes		Total
	Depth	Time	Date	Туре	Type	Ż	-			Ź	\dashv	_	-	Í	"	_	Ť	· ·							Vol. Parge	dince: 82	1
		13/6	10/20	Vapor	Syringe	K				分																820	
VPSV - 552 (Dup.)	205	1338	¥		-																						╄
																											4_
			 																				_	<u> </u>			<u> </u>
						十	1							Γ							L.						
		ļ	 		 	T	1																				_
			 			+		T	1																		
			-	<u> </u>		1	1							T		Π											\perp
			 			+	十	 	1	T			 	T													
			-	 	 	+	+	+	十一	一		 	†	1	1	T											
		-	 			+	+-	+-	+	 	 	十	\vdash	+	1		1		1				T				
		<u> </u>			-	+	+	+-	+-	\vdash	十	\dagger	†	T	T	T		十	1	T	T		1	T			
						+	╁	+-	+-	+	+-	+	+-	+	+	\dagger	+	T	\top	†	1	T	\dagger	\top			T
				 		╀	+	+-	╁	+	╁╴	+	+-	+	+-	+	+	+	+	T	+	T	\dagger	+-			
		<u> </u>		1	(alamatura)				Date	 ≥ / Ti	me	+	ــــــــــــــــــــــــــــــــــــــ					Tota	l# 0	f col	_L ntain	ers:	十	_1	Notes:	<u>,</u>	
Relinquished by: (signatu	Relinquished by: (signature) Date / Time Received by: (signature)									ينح					Total # of contain Chain of Custody seals Y/N											1	
The Will	!! _!	ואח אמ	1350	<u> </u>	All			15)-5	- 0+		3							ls int								
Relinquished by: (signatu	re)	Date	Time	Received by	: (signature)				Date	e / Ti	me					Rec	eive	d go	od c	ondi	tion/	cold	L		_		
Sample disposal instruction			Discont	@ \$2.00 ead	nh Ref	ırn tı	o clie	nt .		Pic	kup		1	Turi	n ar	our	nd ti	ime	:					,			

Teg

isglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

Chain of	ୁ ୀdy	Recor
----------	-------	-------

TEG Project # : 98/02/W/
Outside Lab:

Client: Foster Address: 6/1 A	Whe	eler Blod	5,	i t	2 8	00				_					Da Cli	te: _ ent	Pro	 ject	2/2 #:	15	/g/ 72	B .O.	26	3	Proj	F ject l	Page Manager: ʃ	1 01 2 B.G. Randa	- Jak
Costs	Mosa	CH	L 6	726	26					-																			
Costa Phone: 214/444	-552	7	Fax	c _2	14/	44	1-5	560							Со	llec	tor:	<u>J.</u>	3.6	K	Za u	da	10h		Date	e of	Collection:	10/21/98	
		Time	Dat		Sar	nple	Cont	ainer		TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	VOA 8020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	VOC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals					Field Note	s	Total # of containers
Sample #	Depth	0515					 		Ź	╀	-		Ź	<u>-</u>			-										Volum Pa	urged in cc:	
Blank	20	0729			•	I	Sarr	uge_	忟	1			Ż															80	
VPSV-553	40	0750	10/2	-// <i>X</i> 2				 	X	1			X															160	
VPSV-554	60	0812					<u> </u>	1	又	1			X															240	1_
VPSV - 555	85	0834	-				-		X	1			X															340	\perp
VP5V-556	105	0857		-			 	 	攵	1			文	1														420	
VPSV-557	 	0948	+				†	 	K	* -		1	又															420	
VPSV-558 (Dup.)	105		-	-			 	1	忟	1			攵															480	
VPSV-859	120	0941	-		-	-	 	1	K	十	1	<u>├</u>	X	1		Π	Γ									7		560	
<u>VP5V-560</u>	140	1003	+			├	-	 	K	\	T	†	攵				T	T										640	
VP5V-561	160	1025	-	-	-	-	+	+	K	十	╫	\vdash	K	1		 	T					1	\neg	\exists				720	T
VP5V-562	180	1047	+	-	-	 	+	+	K	}	1	1	犮	1	╁	T	T	1										800	
UPSV - 563	200		-	_	├	-	+	-	K	\	+-	╁	忟	*	-		\dagger	1	1	 	Γ			\neg				800	
VPSV - 564 (Dup.)			+-	-	├-	┼			К	+	+	╁╴	K	}	 	T	-	1	 	 	 	 	1		十			80	\top
VPSV -565	20	1220	_	 	-	} —		-	K	*	╁	+	\bigotimes	1	-	${\dagger}$	\vdash	\vdash	 	\vdash		T				1		180	\top
Relinquished by: (signatu	45	/242 Date /) B	Receiv	ed by:	(signa	ture)		7—	٠	Date		me	1		ــــــــــــــــــــــــــــــــــــــ		<u></u>	٠	Tota	1# of	cont	ainer	s:		Notes:		
Relinquished by: (signature) Relinquished by: (signature)	101	2/98/ Date/	Time	20 F	Receiv	- -	(signa	u	<u></u>			0-7	∂-{- 3 / Ti	918	,	T	urn		Rec	eive	Seal d go	dy se s inte	ct? Y	'/N/N	<u> </u>				

Sample disnosal instructions:

432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

hain of		dy	Record
---------	--	----	--------

TEG Project #: 98/02/W/ Outside Lab:

Client: Foster Address: 611 An Costa A Phone: 214/444	Whee	eler Blud,	· · · · · · · · · · · · · · · · · · ·			······································	-					Clie	nt F	roj	ect	#:	15	72	0	26	3_	_ Pr	ojec	t M	age <u>2</u> anager: <i>B. &</i> t	<u>:Kandoli</u>	h
Phone: 214/444-	5527	7	Fax: 7	14/444	- 5560		-					Col	lect	or:_	\mathcal{F}	6	<u> E</u>) an	dal	ph		_ Da	ate c	of C	ollection: <u>/</u>	121/98	
				Sample	Container	VOA 8010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	VOA 8020 (MTBE)	RPH 418.1	PEST/PCB's 8080	OC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals						Field Notes		Total # of containers
Sample #	Depth	Time	Date	Туре	Туре	k 7	٤	F		- 1 -	칏	뒤	à S	<u> </u>					2 14			, -	-	\dashv	Vd. Ruged i	1000	+
No Sample	65		10/21	Vapor	Syringe	Š					\dashv	4	2	211	7/9	-;-	140		74	79	ea		_		Va. ruigeze ii	320	1
VPSV-567	80	1305				\Rightarrow				₩	ᆉ	\dashv	-	-	-							一	十			420	T
VPSV - 56B	105	1327								Θ	-			\dashv									_			480	T
VBSV - 569	120	1349				+				Θ				\dashv			-						$\neg \dagger$			480	
NPSV - 570 (Dup.)	120	1412																									
Relinquished by: (signate Relinquished by: (signate Sample disposal instructions)	ure)	Date /	//420 Time		(signature)	urn to		40	Date	Tir Tir Tir	98 me		Т	urn		Rec	of C	usto Seal digo	dy s s into	eals act?	ntaine Y/N Y/N tion/o	/NA /NA			Notes:		

Teg

Alsglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

hain of	1	\dy	Record
---------	---	-----	--------

TEG Project # : 981022W1

Outside Lab:

		Fax: (6			-040															<u></u>	/-						D,	200			. 7	
Client: Foster							·····			-					Da	te: _			<u>0/.</u>	<u> 22</u>	/2	8					_ P	aye) /	_ /./
Address: 611 A	ton I	Blody .	<u>Sui</u>	te	80	2									Cli	ent l	Proj	ject	#: ,	<u> 15</u>	<u>72</u>	<u>.</u>	26	<u>3</u> _	_ P	roje	Ct IV مرر	ianager.	D.G		rnao	K.M
Costa	Mess	. CH	92	62	6					_					Lo	catio	on: ,		<u> </u>			Ka.	<u>5a</u>	del	12,		A				- /	
Phone: 214/444-	5527		Fax	::7	14/	444	<u>-53</u>	560				·~~			Co	llec	tor:	B	<u>.6.</u>	K	an	dalj	h		_ D	ate	of C	age	n:/	0/2	2/9E	<u>'-</u> T
												diesel)													ļ							ي
										(gasoline)	(F)		ន	9E)		8									-	1		,				arie drie
•				Ì						gas	(dies	(gas	(BTE	EW)	-	's 8(270	827	ad												5
									8010	315	315	015	020	020	418	PCE	3260	S S	310	is Le	ead			1								#
						nple	1	ainer	VOA 8	TPH 8015	TPH 8015 (diesel)	TPH 8015 (gas &	VOA 8020 (BTEX)	VOA 8020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	VOC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals						Field No	tes			1040
Sample #	Depth	Time	Dat			pe	 	pe	Š	F	F	F	Ż	>	1	Ь	^	S	<u>-</u>	0	<u> </u>	2				-		blume		and i	i m:	†
Blank			10	/22	Vag	or	Syri	nge	\bigcirc	┼─	-	-			_	<u> </u>	_											W.UME	a un	8		T
VPSV-571	20	0727						}	₩	+-	-	╂──	\Diamond	-	\vdash															14	<i>'</i> 0	T
VPSV-572	35	0748	\vdash				├	 	$ \Diamond$	+	-	├	Θ	-	 	\vdash														20		1
VPSV-573	50	0810					 	\vdash	Ю	} —	├-	\vdash	Ю	-	-		-													24		T
VPSV-574	60	0833							+	 		╁╾	Θ	-	-	-				-											20	T
VPSV-575	80	0854				 	-	-	\otimes	╫┈	┼-	┢	\bowtie	┼	-	╁	-				-	 					_			32		+
VPSV-576 (Dup.)	80	0917				-	 	├	+	 	┼─	╁	\bigcirc	+-	-	├		-	 		 	 	-				 			38		十
UPSV-577	95	0938	ļ	-			-	├	+	$\!\!\!+\!\!\!\!-$	┼─	╁╌	₩	┿	-	-	-	-	_	-	-	╁		-				†			10	†
VPSV-578	110	1000		<u> </u>		-		 	+	+	+	┼	₩	┥	├-	┼	┼-	-	-	├─	-	┼─	-					 			20	+
VPSV-579	125	1022	<u> </u>			-	-	 	κ	+	+	╁	\leftarrow	╁	┼╌	╀	\vdash	-	├	-	-	 	-		-		 	╅┈┈			60	\dagger
VBV-580	140	1044					 	-	K		+-	╂┈	K	 	-	\vdash	┼-	\vdash	-	-	┝	┼	\vdash		_			-			20	\dagger
VBV-581	155	1106	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		-	-	╀	┼	K	 	┼	┼-	\vdash	├	╁	╫	-	╁	\vdash		-		-	 			20	十
VPSV-582 (Dup.)	155	1128	<u> </u>	<u> </u>	<u> </u>	 	 	 	K	+	╀╌	-	K	+	┼	┼	┼	\vdash	├─	-	-	+	-	\vdash	-	-	\vdash	 			80	+
VPSV-583	20			 	<u> </u>	-		-	+	+	+-	+	Ю	╁╴	╁	┼─	┼	╫	├	 	-	┼	┢	\vdash	-	-	-				40	十
VPSV-584	35			<u> </u>	<u></u>	1	(alama	11150		7		Date		ime	┼	ــــــــــــــــــــــــــــــــــــــ	Т	<u></u>	J		Tota	 # of	con	taine	ers:		<u> </u>	Notes:			10	Ц
Relinquished by: (signatu	re)	Date /		26		ea by:	(signa	iture)		1	42	_		~~				C	hain			dy se										
1/2 Kandoli	10	12/98	14	_		<u> </u>	t	_			/_			-78	2					;	Seal	s inta	act?	Y/N/	'ΝΑ]				
Relinquished by: (signatu	re)	Date	Time	F	leceiv	ed by:	(signa	iture)				Date	e / T	ime					Rec	eived	d go	od co	ondit	ion/c	old			4				
																7	سور و و	arc	~111	A 41	moo	•										
Sample disposal instruction		TEG	Dieno	sal f	n \$2 (O eac	h	Retu	ırn to	clie	nt		Pic	kup	٦		uH	ail	Juil	u li	, I I G	·										

Samula disposal instructions

432 N. Cedros Avenue
Solana Beach, CA 92075

TEG Disposal @ \$2.00 each

hain	of	1	dy	Reco
Halli	Ų,	4	٠,	

TEG Project #: 98/022W/ Outside Lab:

(619) 79	93-0401	Fax: (6	319) 793	3-0404																				· · ·			
Client: Foster	ullippi	lor					_				!	Date	e: _		10	<u> </u>	22	19	8					_ Pa	age	Of2	<u> </u>
Address: 6/1 Andress: 6/1 Andress: 2/4/444	L	RIN	Suite	BOO			_					Clie	nt F	Proje	ect	#: ,	15	<u> 72.</u>	02	6	3	_ Pi	roje	ct M	anager: B.	G, Kana	20/ph
Address:A	Mon	NIA.	9162	6			_					Loca	atio	n: _		17	<u>Z-</u>	- <i>[-</i>	250	da	ua,		<u>C14</u>		collection:		
COSTA I	Mesag	1	Eav:	24/11	L5527		_					Coll	ect	or: _	B.	<u>6.</u>	R	LUG	lefa	4		_ D	ate	of C	ollection:	10/22/9	8_
Phone: 7/4/444	332		Гах. <u> </u>	<i>(17-)-</i>			<u>-</u>		Т	_	Т	Т	Т	Т	Т	Т	П		<u> </u>		\neg	П	П				
											١																
				•					iese	VOA 8020 (BTEX)																	1 2
							ej	<u>@</u>	8	8	E)		8			0							- 1				of containers
		1					(gas	(die	(gas	(B)	3	-	3's 8		3270	1827	ead										
						910	315	915	135	8	8	418	2	3260	<u>8</u>	3310	ic L	Leac	S			.					*
				Sample	Container	VOA 8010	TPH 8015 (gasoline)	품	포	8 8	8	TRPH 418.1	EST	8	emi	ž	Organic Lead	Total Lead	Metals					,	Field Notes		1 2
Sample #	Depth	Time	Date	Туре	Туре	 ≥	F	F	팆	ᄼᆉ	<u> </u>	=	-	긤	S	-	0	-	-						Vol. Rurge	lin ce: 2	200
VPSV-585	50	1259	10/22	Vogor	Syringe	\bigcirc			-	+	-	\dashv	-		_		_	-	╁	-					7	260	
VPSV - SBG	65	1321	<u> </u>	 		₩	-	\vdash	-	\forall	\dashv	\dashv	-					-	\vdash	\vdash						320	
VPSV-587	80	1343		 	 	₩	 		-	K	\dashv		_				<u> </u>	\vdash	†	T						320	
VPSV-588 (Dug.)	80	1406	1	1-1-			-			4							<u> </u>		T								
			<u> </u>		 	┼╌	├	\vdash		\dashv									T								
						_	╫	-								-		T	1	†	T						
			ļ			+-	┼-	-	\vdash					 		 	 	 	†	+							
						╂	┼	-		\vdash	_			\vdash	-	\vdash	-	T	T	1	1		1				
						+	┼	-	-		_		_	 	\vdash	\vdash	十	†	╁	1							
						+-	┼	+-	-	\vdash	-	-	-	╁	-	\vdash	+-	十	十	\top	1						
				-		+-	+	+-	-		-	-	-	\dagger	+	T	+	+	+	T	1	1		1			
						+	+	+-	\vdash		-	 	-	十	+-	+	+	T	+	\dagger	\top		T	1			
						+-	╁	╫	-	-	\vdash	 	-	+-	+	+	\dagger	+	+	+	1	T	1	\top			
					_	+	+	╁	╁	-	╁	+-	+-	+	+	+	T	+	+	1	T	\top	1	1			
				Danah and ha	(eignature)		4_		<u> </u> Date	/ Tir	<u>l</u> me	\vdash	ــــــــــــــــــــــــــــــــــــــ		Ц.	Ш		Tota	al # (of co	ntair	ers:	T		Notes:		
Relinquished by: (signat	ture)	Date	Time	Received by	: (signature)		2			/ Tir	_~				C	hair	of	Cust	ody :	seals	s Y/N	I/NA					
An Vandel	1 101	12/98/	1/1420		700	4	_		10-			4									? Y/N				-		
Relinquished by: (signated	ture)	Date	Time	Received by	r: (signature)				Date	e / Tii	me					Red	ceive	ed go	ood (ond	ition/	cold			4		
													7	Fire	n ar	oui	nd f	ime	:								
			Dianasa	(@ \$2.00 ea	ch Ret	urn t	o clie	nt		Pici	kup	_j	1		. 41	. wi	, 🕶 🐧		`-					•			
and the second transfer and		1 (, LUSUONB	, , , , , , , , , , , , , , , , , , ,																							

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

hain (tody Record

Client: Foster Address: 611 A			Suto	800	±																				Page/ Manager: <u>B. &</u>		
Costa 1							-					LA	cati	un.	jeci	. #. . <i>. 4</i>	<u>22</u> . /9	- 1 /-	D.	<u> </u>	<u>۔ د</u> . د ک	 /	TOJE	24	vialiayel. <u>D. a</u>	4 Kanaay	la.
Phone: 2/4/444					1-5560		<u> </u>					Co	llec	tor:	7	3.6	- A	Zan	do	ph		_ [ate	of (Collection: //	5/23/98	
Sample #	Depth	Time	Date	Sample Type	Container Type	VOA 8010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	VOA 8020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	VOC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals						Field Notes		Total # of containers
Blank		0548	10/23	Vapor	Syringe	X				X															Volame Purge	dinac:	\perp
VPSV-589	95	0738				\boxtimes				X																380	
VBV - 590	108	0800				\boxtimes	1			\bowtie																435	
VPSV-591	118	0821				X	1			\boxtimes																475	
B-36@20'(None)	20	0912		No Sam	pla-Tip=	4	Vers	20	1.	1	na	of	6	bu	o,	وم	zva	e.				<u> </u>					
VBV-592	35	0915		/		X			7	X						/										140	
VPSV-573	55	0940				X				\times																220	
VPSV-594 (Dup.)	55	1001				\mathbf{X}	1			X																220	
VPSV-595	75	1023				X				X																300	
VP5V-596	92	1046	·			X				X	-															370	
						\dagger																					+
	 																										T
	1	1												Π													
						\top	1																			————	
Relinquished by: (signature) Relinquished by: (signature)	101	Date / 128/92/	1110	Received by:	tue			11	Date) }	<u>98</u>		-				of C	usto Seals	# of dy se s inta	als ct?	Y/N/! Y/N/!	NA NA			Notes:		
Sample disposal instruction	ns:	TEG I	Disposal (D \$2.00 each	nRetui	rn to	clien	t		Pick	up		T	urn	arc	un	d tir	ne:									

Steg

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

hain di tody

itody Record

TEG Project # :96	31026W1			_
Outside Lab:	· · · · · · · · · · · · · · · · · · ·			_
126/98	Page _	1	Of <u>Z</u>	_

VPSV - 599 55 0752 VPSV - 600 (Dup.) 55 0815 VPSV - 601 70 0837 VPSV - 602 90 0858 - 115 0919 No Saurale - Tip #6 is plugged; cannot puge or blow	-
Costa Mesa, CA 92626 Docation: SPL - Pasadera, CA	4
Phone: 714/444-5527 Fax: 714/444-5560 Collector: B.k. Pandolph Date of Collection: 16/26/98	_
Sample # Depth Time Date Type Container Type 0.00 H H H H H H H H H H H H H H H H H	_
Sample # Depth Time Date Type Container Type 0.00 H H H H H H H H H H H H H H H H H	
Sample # Depth Time Date Type Container Type 0.00 H H H H H H H H H H H H H H H H H	ers
Blank	ntair
Blank	of co
Blank	Total # of containers
Blank	ot 1
VPSV - 597 25 0709 160	
VPSV - 598 40 0730 VPSV - 599 55 0752 VPSV - 600 (Dup.) 55 0815 VPSV - 601 70 0837 VPSV - 602 90 0858 - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace	
VPSV - 599 55 0752 VPSV - 600 (Dup.) 55 0815 VPSV - 601 70 0837 VPSV - 602 90 0858 - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace	
VPSV - 600 (Dup.) 55 0815 VPSV - 601 70 0837 VPSV - 602 90 0858 - 115 0919 No Semple - Tip #6 is plugged; cannot pugg a blace	·
VPSV-601 70 0837 280 VPSV-602 90 0858 360 - 115 0919 No Semple - Tip #6 is plugged; cannot puge a blace	<u> </u>
VPSV-602 90 0858 360 - 115 0919 No Semple - Tim #6 is plugged; cannot puge or blow	-
- 115 0919 No Sample - Tip 6 is plugged; cannot prige a blow	-
VPSV-603 135 0922 540	<u> </u>
VPSV-604 155 0945 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
VPSV-605 180 1005 720	
VPSV-606 (Dup.) 180 1028 720	
VPSV -607 195 1050 780	
VPSV - 608 25 1126 100	<u> </u>
VPSV - 609 40 1208 1 160	<u> </u>
Relinquished by: (signature) Date / Time Received by: (signature) Date / Time Total # of containers:	
The tandoon 10/26/98 // 1345 The state 1375 Chain of Custody seals Y/N/NA Seals intact? Y/N/NA	
Relinquished by: (signature) Date / Time Received by: (signature) Date / Time Received good condition/cold	
Turn around time: Turn around time:	

Steg

ransglobal Environmental Geochemistry 432 N. Cedros Ávenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

Chain (tody Re	cord
-----------------	------

Client: Foster			, , ,	/								Da	ite:			10	12	61	196	3					Page Z	Of 2	
Address: <u>6// A</u>	Inton	Blud.	, Duit	<u>e 800</u>			_					Cli	ent	Pro	ject	t #:	15	72	0	26	3	F	Proj	ect	Manager: <u>3.2</u>	2 Kandels	1
Costa Phone: <u>7/4/444</u> -	19680 1827	<u>, CA</u>	Fax: <u>7</u>	26	-5560							Lo	cati llec	on: :tor:	3	6	L L	an	la: da	ah	ler	[<i>Cy</i> Date	of	Collection:/	0/16/98	<u>-</u>
Sample#	Depth	Time	Date	Sample Type	Container Type	VOA 8010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)			PEST/PCB's 8080			PNA 8310/8270	Organic Lead								Field Notes		Total # of containers
VBV-610	60	1232	10/26	Vapor	Syringe	X				X															Vol. Runged	in ac: 240	L
VBV-611	80	1254			<u> </u>	\boxtimes				\boxtimes												_				320	
VPSV-612 (Dug.)	80	1316				\boxtimes				\boxtimes						·							_			320	<u> </u>
VP5V-613	100	1338		•	1	X				\boxtimes														L		400	
																							L				
								1																			<u> </u>
																								_			
																											<u> </u>
						T																					
																								П			
						T		·																			
		 																					Π				
																								1			1
			1	†			T							Г			İ							T	1.		T
			 	 		T	T					\vdash		<u> </u>										T	1		
Relinquished by: (signatu Relinquished by: (signatu	10	Date / 7	1/134	Received by:	Mali			10-	26	/Tin	8			1			of Co	usto Seals	# of dy se inte	als	Y/N/ Y/N/	NA NA			Notes:		
Sample disposal instruction	ıs:	TEG I	Disposal (D \$2.00 each	Retur	n to	clien	t		Pick	up		T	urn	arc	un	d tir	ne:	-								

Teg

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404 hain 🌓 tody

tody Record

TEG Project #: 98/027W/
Outside Lab:

Client: Foster Address: 6/1 Au			1. 4	a no			_				D:	ate:	Pro	iect	<i>10</i>	15	7/2	8	<i>A</i> :	3	Pr	oiec	Page/	01_2 B. Low Randa	-
Costa							-										_							7	, ,
Phone: 7/4/444-	400. 5527		Fax: _	214/44	1-5560		_				C	ollec	tor:	3.	Se	Ra	па	lo p	_		Da	ate o	f Collection:	10/27/98	3
									T																
			·			10	15 (gasoline)	TPH 8015 (diesel)	15 (gas & diesel)	VOA 8020 (BTEX)	18.1	PEST/PCB's 8080	09:	Semi Vol 8270	PNA 8310/8270	Lead	ad								Total # of containers
Coursia #	Donth	Time	Date	Sample Type	Container Type	VOA 8010	PH 80	РН 80	PH 80	8 8 8 8	RPH 4	EST/P	VOC 8260	Semi Vo	NA 83	Organic Lead	Total Lead	Metals					Field Notes		Total #
Sample # Blank	Depth	0445	10/2		Syringe	Ź				ŹŤ	+-	╁	f	Ů,	_	Ť		-				\neg	Volame Por	gadince:	+
VPSV-614	120	07/3	10/2	1	7.7	X				Ž		1	T											480	
VPSV-615	140					X				Ž	\top													560	
VBV-616		0758			1	X				\overline{X}	1													620	
VPSV - 617	170	0821				X				X														680	
VPSV -618	185	0842				X				X														740	
VPSV-619 (Dup.)	185	1				X				X														740	
VPSV-620		0940				X				X														100	\perp
VPSV-621	45	1002				X				X														180	
VPSV -622	65	1026				X				X														260	
VPSV-623	80	1047				X				X														320	
VPSV-624 (Dup.)	80	1111				X				X														320	
-7	95	1100	1/25	make - To -	+ still wa	ker	blue	310		m b	low.	64	1/4	un	of	our	e.								
VPSV-625	110	1132		1		X				X														440	
VPSV - 626	125	12/2	1	1	4	\times	1			X														500	
Relinquished by: (signature) Relinquished by: (signature)	re) - 10/2	Date / 7/98 // Days / 1	1355	Received by:	Mula		_/	5 ا ح-0	57-	Time						of Ci	usto Seals	# of dy se s inta od co	als ` ct? `	Y/N/N Y/N/N	VA		Notes:		
Sample disposal instruction		TEG	Disposal	@ \$2.00 eac	h Retu	rn to	clien	t .		Pickup		7	urn	arc	oun	d tir	ne:					_			

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

Chain (ito

tody Record

Client: Foster Address: 6// K Costa Phone: 7/4/444	- Whe Inton Mose	eler Blud.	Suite 9262	800			<u> </u>					Cli	ent	Pro	ject	# :	15	<u>72</u>	0	4	3	_ Pr	ojec	t M	age <u>2</u> anager: <u>R.6</u>	Budde	6
Phone: 714/444-	5527		Fax: _	14/444	L-5560		_					Co	llec	tor:	K	6	Ĥ	inc	le/f	4		_ Da	ate c	of C	ollection:	10/27/98	
Sample # VPSV - 627 VPSV - 628 VPSV - 629 VPSV - 630 (Dup.)	Depth /40 /55 /70 /70	Time 1240 1302 1325 1348	Date	Sample Type	Container Type Syringe	XXXX VOA 8010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	VOA 8020 (MTBE)					PNA 8310/8270	Organic Lead	Total Lead	Metais						Field Notes Vol. Purged		Total # of containers
Relinquished by: (signate Relinquished by: (signate Sample disposal instruction	10) ure)	Date / /21/98/Date/	//13.55 Time	Received by: Received by: 3 \$2.00 each	(signature)	rn to	clier	10	Date Date	S () 7			T	urr		Rec	of C	usto Seal d go	dy so s into od co	eals act?	tainee Y/N/ Y/N/	NA NA			Notes:		

Teg

ransglobal Environmental Geochemistry 432 N. Cedros Avenue Solana Beach, CA 92075 (619) 793-0401 Fax: (619) 793-0404

	12	
hain	Æ	
noin	*	
Halli	48	,

tody Record

TEG Project #: 981028W/
Outside Lab:

Client: Foster		eler	019/19									Da	te:			0/	25	/9.	8					F	Page/_	Of/	
Address: 6U A			Suite	800								Cli	ent	Pro	ject	; #:	15	72	.0	26	3		Proj	ect	Manager: <u>Ba</u>		
Gsta	Mesa	. CA	92620	<u> </u>			_					Lo	cati	on:		JP	<u>L</u> -	-)	Pa	SAI	ten	a,	a	4_			
Phone: 714/444-	5527		Fax: _	214/444	1-5560			,				Co	llec	tor:	3	6	K	ue Luc	lo fi	h		[Date	e of	Collection:/	0/18/98	
				Samula	Container	VOA 8010	TPH 8015 (gasoline)	TPH 8015 (diesel)	TPH 8015 (gas & diesel)	VOA 8020 (BTEX)	VOA 8020 (MTBE)	TRPH 418.1	PEST/PCB's 8080	VOC 8260	Semi Vol 8270	PNA 8310/8270	Organic Lead	Total Lead	Metals								Total # of containers
Sample #	Depth	Time	Date	Sample Type	Container Type	ò	횬	Ė	TPF	ΛΟ/	<u>\</u>	TR	PE	Ņ	Ser	Ŋd	O	Tota	Me				\perp		Field Notes		1 <u>o</u>
Blank	-	0455	10/28	Vapor	Syringe	X				\boxtimes									_	L	_	L	_	1_	Volume Purge	dince:	—
VPSU-631	20	0727			1/1/	\boxtimes				\boxtimes			<u> </u>						L	ļ.	L		<u> </u>	_	1 1	80	
VPSV-632	35	0748				X	_			\boxtimes						_			_	\bot	ļ	_	_	-		140	—
VPSV -633	50	0809				X				X									$oxed{oxed}$	_	1	ـ	↓	<u> </u>		200	-
VPSV-634	20	0831				\boxtimes				X						_		_	_	1_	_	↓_		-		180	
VBV-635	85	0853				X			L	\boxtimes	_							_	$oxed{igspace}$	$oldsymbol{oldsymbol{\perp}}$	_	<u> </u>	_	 		340	
VPSV-836 (Dup)	85	0915				\nearrow				X	_			_	`			_	_	$oldsymbol{\perp}$	↓_	↓_	<u> </u>	╀		340	
VPSV-637	100	09347				\bot		_		X	<u> </u>			↓_		L	_	<u> </u>	igapha	_	 	↓_	╀-	\bot		400	
VPSV-638	110	0959				X				\boxtimes	_			_		_	_	<u> </u>	_	↓	\downarrow	—	_	 		440	
VPSV-639	120	1020				\nearrow	_		<u> </u>	\bowtie		_	<u> </u>	igspace			<u> </u>	_	-	_	$igl\downarrow$	$oldsymbol{oldsymbol{\perp}}$	╀-	╀		480	-
VPSV-640	130	1042	1	1	1	X	-	┼	_	X					_			 	+	+		-	+	+		520	+
																											\bot
	ļ	-				+	+	-	_	_	-	-	-	-	-	├	\vdash	-	+	+	+	+	+	╂			+
Relinquished by: (signature) Relinquished by: (signature)	10/.	Date / 12/98 / Date/	11050	Received by:	ALC		- <i>[</i>	10-	05 • 0	7 Ti	98 98		J	1			of C	usto Seal	dy s	eals lact?	ntain Y/N Y/N tion/	I/NA I/NA	_		Notes:		
Sample disposal instruction	ns:	TEG	Disposal (@ \$2.00 eac	hRetu	rn to	clier	nt .	<u></u>	Picl	 kup		Т	urn	arc												

APPENDIX B-3 INITIAL THREE-POINT CALIBRATION DATA

INITIAL CALIBRATION (3-POINT)

WINNEBAGO 1

SUPPLY SOURCE: ACCUSTANDARD LOT# A7120160

INSTRUMENT: SHIMADZU GC14A RIGHT

			1		STANDARD)		MID S	TANDARD			HIGH	STANDARD)		SUMA	MARY	
COMPOUND	DETECTOR	CAL DATE	RT	MASS	AREA	RF	RT	MASS	AREA	RF	RT	MASS	AREA	RF	AVE RT	AVE RF	SD	%RSI
CARBON TETRACHLORIDE	HALL	10/7/98	9.3	2	221.0	110.5	9.3	20.0	2133	106.7	9.3	100	44000	440.7				
CHLOROETHANE/BROMOMETHANE	HALL	10/18/98	4.4	10	880.0	88.0	4.3	40.0	3725	93.1	4.2	160	11368	113.7	9.3	110.3	3.5	3.2%
CHLOROFORM	HALL	10/7/98	8.2	2	418.0	209.0	8.2	20.0	4097	204.9			14694	91.8	4.3	91.0	2.7	2.9%
1.1-DICHLORO ETHANE	HALL	10/7/98	7.1	2	248.0	124.0	7.1	20.0	2442	122.1	8.2	100	19147	191.5	8.2	201.8	9.2	4.5%
1,2-DICHLORO ETHANE	HALL	10/7/98	9.4	2	411.0	205.5	9.4	20.0	4364	218.2	7.1	100	12266	122.7	7.1	122.9	1.0	0.8%
1,1-DICHLORO ETHENE	PID	10/7/98	5.4	2	18.7	9.4	5.4	20.0	183		9.4	100	23706	237.1	9.4	220.3	15.9	7.2%
CIS-1,2-DICHLORO ETHENE	PID	10/7/98	7.9	2	24.6	12.3	7.9	20.0	239	9.1	5.4	100	955	9.6	5.4	9.3	0.2	2.3%
TRANS-1,2-DICHLORO ETHENE	PID	10/7/98	6.4	2	42.7	21.4	6.4	20.0	419	11.9	7.9	100	1188	11.9	7.9	12.0	0.2	1.9%
DICHLOROMETHANE	HALL	10/7/98	6.1	2	215.0	107.5	6.1	20.0		21.0	6.4	100	2054	20.5	6.4	20.9	0.4	1.9%
TETRACHLORO ETHENE	PID	10/7/98	14.3	2	24.4	12.2	14.3	20.0	2363 256	118.2 12.8	6.1	100	12597	126.0	6.1	117.2	9.3	7.9%
1,1,1,2-TETRACHLORO ETHANE/CHLOROBENZENE	HALL	10/7/98	16.2	4	315.0	78.8	16.2	40.0	3349	12.8 83.7	16.2	100	1263	12.6	14.3	12.5	0.3	2.4%
1,1,2,2-TETRACHLORO ETHANE	HALL	10/7/98	18.8	2	127.0	63.5	18.8	20.0	1451	72.6	18.8	200	18095	90.5	16.2	84.3	5.9	7.0%
1,1,1-TRICHLORO ETHANE	HALL	10/7/98	8.8	2	236.0	118.0	8.8	20.0	2715	135.8	8.8	100 100	7807	78.1	18.8	71.4	7.4	10.39
1,1,2-TRICHLORO ETHANE	HALL	10/7/98	13.6	2	183.0	91.5	13.6	20.0	2034	101.7	13.6		14192	141.9	8.8	131.9	12.4	9.4%
TRICHLORO ETHENE	PID	10/7/98	10.5	2	33.9	17.0	10.5	20.0	313	101.7		100	9687	96.9	13.6	96.7	5.1	5.3%
VINYL CHLORIDE	HALL	10/18/98	3.7	5	719.0	143.8	3.7	20.0	2942	15.7	10,5 3,6	100	1566	15.7	10.5	16.1	0.7	4.6%
TRICHLOROFLUOROMETHANE (FR11)	HALL	10/18/98	4.8	5	1677.0	335.4	4.7	20.0	5667	283.4	1	80	11870	148.4	3.7	146.4	2.4	1.6%
DICHLORODIFLUOROMETHANE (FR12)	HALL	10/18/98	3.3	5	25.0	5.0	3.2	20.0	104		4.5	80	20720	259.0	4.7	292.6	39.0	13.3%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	10/7/98	5.2	2	34.7	17.4	5.2	20.0	305	5.2 15.3	3.2 5.2	80 100	461 1609	5.8 16.1	3.2 5.2	5.3 16.2	0.4 1.1	7.5% 6.5%
BENZENE	PID	10/7/98	9.5	2	56.6	20.2	0.5	20.0	<i></i>									
ETHYLBENZENE	PID	10/7/98	16.2	2	56.6 54.4	28.3 27.2	9.5	20.0	539	27.0	9.5	100	2572	25.7	9.5	27.0	1.3	4.8%
TOLUENE	PID	10/7/98	12.9	2	54.4 55.0		16.2	20.0	544	27.2	16.2	100	2701	27.0	16.2	27.1	0.1	0.4%
m&p-XYLENES	PID	10/7/98	16.4	4	55.0 124.7	27.5	12.9	20.0	542	27.1	12.9	100	2615	26.2	12.9	26.9	0.7	2.6%
D-XYLENE	PID	10/7/98	17.4	2	55.5	31.2 27.8	16.4	40.0	1296	32.4	16.4	200	6339	31.7	16.4	31.8	0.6	1.9%
	- FID	10///96	17.4		55.5	27.8	17.4	20.0	519	25.9	17.4	100	2529	25.3	17.4	26.3	1.3	4.9%
CHLOROMETHANE	HALL	10/18/98	3.6	5	102	20.40	3.6	20	490	24.50	3.5	80	2295	28.69	3,6	24.5	4.1	16.9%
1.4 DIFLUORO BENZENE	PID	10/7/98	9,8		24.0	40.5												·
CHLOROBENZENE	PID	10/7/98	9.8 16.1	2	21.0	10.5	9.8	20.0	223	11,1	9.8	100	1069	10.7	9.8	10.8	0.3	3.0%
4 BROMOFLUORO BENZENE	PID	10/7/98	16.1	2 2	47.6 79.6	23.8 39.8	16.1 19.1	20.0 20.0	512 839	25.6 42.0	16.1 19.1	100 100	2440 4169	24.4 41.7	16.1 19.1	24.6 41.1	0.9 1.2	3.7% 2.9%

ANALYSES PERFORMED IN TEG'S MOBILE LABORATORY

ANALYSES PERFORMED BY: ALLEN GLOVER DATA REVIEWED BY:

SOIL GAS INITIAL LCS STANDARD REPORT (3-POINT CALIBRATION VERIFICATION)

LAB: TEG WINN 1

SUPPLY SOURCE: ACCUSTANDARD LOT# A7120170

INSTRUMENT: SHIMADZU GC14A RIGHT

COMPOUND	DETECTOR	CAL DATE	AVE RF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	10/7/98	110.3	20	9.3	2,528	126.4	14.6%
CHLOROFORM	HALL	10/7/98	201.8	20	8.2	4,249	212.5	5.3%
1.1-DICHLORO ETHANE	HALL	10/7/98	122.9	20	7.1	2,295	114.8	6.6%
1,2-DICHLORO ETHANE	HALL	10/7/98	220.3	20	9.4	4,672	233.6	6.0%
1,1-DICHLORO ETHENE	PID	10/7/98	9.3	20	5.4	206	10.3	10.8%
CIS-1,2-DICHLORO ETHENE	PID	10/7/98	12.0	20	7.9	251	12.6	4.6%
TRANS-1,2-DICHLORO ETHENE	PID	10/7/98	20.9	20	6.4	458	22.9	9.6%
DICHLOROMETHANE	HALL	10/7/98	117.2	20	6.1	2,500	125.0	6.7%
TETRACHLORO ETHENE	PID	10/7/98	12.5	20	14.3	278	13.9	11.2%
1,1,1,2-TETRACHLORO ETHANE/CHLOROBENZENE	HALL	10/7/98	84.3	40	16.2	3,776	94.4	12.0%
1,1,2,2-TETRACHLORO ETHANE	HALL	10/7/98	71.4	20	18.8	1,587	79.4	11.1%
1,1,1-TRICHLORO ETHANE	HALL	10/7/98	131.9	20	8.8	2,827	141.4	7.2%
1,1,2-TRICHLORO ETHANE	HALL	10/7/98	96.7	20	13.6	2,113	105.7	9.3%
TRICHLORO ETHENE	PID	10/7/98	16.1	20	10.5	340	17.0	5.6%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	10/7/98	16.2	20	5.2	330	16.5	1.9%
BENZENE	PID	10/7/98	27.0	20	9.5	571	28.6	5.7%
ETHYLBENZENE	PID	10/7/98	27.1	20	16.2	564	28.2	4.1%
TOLUENE	PID	10/7/98	26.9	20	12.9	601	30.1	11.7%
m&p-XYLENES	PID	10/7/98	31.8	40	16.4	1,339	33.5	5.3%
o-XYLENE	PID	10/7/98	26.3	20	17.4	564	28.2	7.2%
1,4 DIFLUORO BENZENE	PID	10/7/98	10.8	20	9.8	234	11.7	8.3%
CHLOROBENZENE	PID	10/7/98	24.6	20	16.1	563	28.2	14.4%
4 BROMOFLUORO BENZENE	PID	10/7/98	41.1	20	19.1	870	43.5	5.8%

ANALYSES PERFORMED IN TEG'S MOBILE LABORATORY

ANALYSES PERFORMED BY: ALLEN GLOVER

DATA REVIEWED BY:

APPENDIX B-4

DAILY OPENING, CLOSING, AND CONTINUING CALIBRATION VERIFICATION REPORTS

DATE: 10/19/98

TEG Project #981019W1

WINNEBAGO 1

SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160

SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170

INSTRUMENT: SHIMADZU GC14A RIGHT

		i		OPE	NING STAN	DARD	1		CLO	SING STAN	DARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,109	105.5	4.4%	20	9.4	2,089	104.5	5.3%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,572	128.6	4.6%	20	7.1	2,116	105.8	13.9%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,270	213.5	3.1%	20	9.5	4,334	216.7	1.6%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	164	8.2	11.8%	20	5.4	170	8.5	8.6%
CIS-1,2-DICHLORO ETHENE	PID	12.0	. 20	7.9	234	11.7	2.5%	20	7.9	215	10.8	10.4%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	438	21.9	4.8%	20	6.4	392	19.6	6.2%
TETRACHLORO ETHENE	PID	12.5	20	14.4	264	13.2	5.6%	20	14.5	224	11.2	10.4%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,669	133.5	1.2%	20	8.9	2.531	126.6	4.1%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2.003	100.2	3.6%	20	13.8	2,133	106.7	10.3%
TRICHLORO ETHENE	PID	16.1	20	10.6	289	14.5	10.2%	20	10.6	264	13.2	18.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.4	355	17.8	9.6%	20	5.3	352	17.6	8.6%
BENZENE	PID	27.0	20	9.5	528	26.4	2.2%	20	9.6	477	23.9	11.7%
ETHYLBENZENE	PID	27.1	20	16.3	570	28.5	5.2%	20	16.4	507	25.4	6.5%
TOLUENE	PID	26.9	20	13.0	536	26.8	0.4%	20	13.1	465	23.3	13.6%
m&p-XYLENES	PID	31.8	40	16.5	1,236	30.9	2.8%	40	16.6	1,114	27.9	12.4%
o-XYLENE	PID	26.3	20	17.6	522	26.1	0.8%	20	17.7	457	22.9	13.1%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	223	11.2	3.2%	20	9.9	198	9.9	8.3%
CHLOROBENZENE	PID	24.6	20	16.2	506	25.3	2.8%	20	16.3	409	20.5	16.9%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.3	847	42.4	3.0%	20	19.3	694	34.7	15.6%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/19/98
TEG Project #981019W1
SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170
WINNEBAGO 1
INSTRUMENT: SHIMADZU GC14A RIGHT

VIII. (100)	INSTRUMENT.	SHIMADZU G	CIAA RIGH	ŀ			
				CON	TINUING STAND	ARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,506	125.3	13.6%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,471	123.6	0.5%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	5,047	252.4	14.5%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	155	7.8	16.7%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	214	10.7	10.8%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	374	18.7	10.5%
TETRACHLORO ETHENE	PID	12.5	20	14.4	236	11.8	5.6%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,772	138.6	5.1%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,205	110.3	14.0%
TRICHLORO ETHENE	PID	16.1	20	10.6	2,203 275	13.8	
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	310	15.6 15.5	14.6% 4.3%
BENZENE	PID	27.0	20	9.5	483	24.2	10.6%
ETHYLBENZENE	PID	27.1	20	16.3	479	24.0	11.6%
TOLUENE	PID	26.9	20	13.0	484	24.2	10.0%
m&p-XYLENES	PID	31.8	40	16.5	1,145	28.6	10.0%
o-XYLENE	PID	26.3	20	17.6	473	23.7	10.0%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	199	10.0	7.9%
CHLOROBENZENE	PID	24.6	20	16.2	478	23.9	7.9% 2.8%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.2	752	23. 9 37.6	2.6% 8.5%
ANALYSES PERFORMED ON-SITE IN TEG'S DOHS OF						07.0	0.576

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/20/98 SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160 SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170

WINNEBAGO 1 INSTRUMENT: SHIMADZU GC14A RIGHT

				OPE	NING STAN	DARD			CLO	SING STAN	DARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,405	120.3	9.0%	20	9.3	2,199	110.0	0.3%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.0	2,533	126.7	3.1%	20	7.1	2,052	102.6	16.5%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.4	4,157	207.9	5.7%	20	9.5	4,062	203.1	7.8%
1,1-DICHLORO ETHENE	PID	9.3	20	5.3	197	9.9	5.9%	20	5.4	192	9.6	3.2%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.8	256	12.8	6.7%	20	7.9	204	10.2	15.0%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	468	23.4	12.0%	20	6.4	376	18.8	10.0%
TETRACHLORO ETHENE	PID	12.5	20	14.4	271	13.6	8.4%	20	14.5	261	13.1	4.4%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.8	2,805	140.3	6.3%	20	8.9	2,597	129.9	1.6%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,021	101.1	4.5%	20	13.7	2,134	106.7	10.3%
TRICHLORO ETHENE	PID	16.1	20	10.5	336	16.8	4.3%	20	10.6	268	13.4	16.8%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.1	361	18.1	11.4%	20	5.2	365	18.3	12.7%
BENZENE	PID	27.0	20	9.4	606	30.3	12.2%	20	9.5	444	22.2	17.8%
ETHYLBENZENE	PID	27.1	20	16.3	621	31.1	14.6%	20	16.3	477	23.9	12.0%
TOLUENE	PID	26.9	20	13.0	598	29.9	11.2%	20	13.1	466	23.3	13.4%
m&p-XYLENES	PID	31.8	40	16.4	1,383	34.6	8.7%	40	16.6	1,087	27.2	14.5%
o-XYLENE	PID	26.3	20	17.5	577	28.9	9.7%	20	17.7	488	24.4	7.2%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.8	230	11.5	6.5%	20	9.9	189	9.5	12.5%
CHLOROBENZENE	PID	24.6	. 20	16.2	514	25.7	4.5%	20	16.3	466	23.3	5.3%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.2	932	46.6	13.4%	20	19.4	766	38.3	6.8%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/20/98 TEG Project #981020W1 WINNEBAGO 1

SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170 INSTRUMENT: SHIMADZU GC144 RIGHT

WINNEBAGU T	INSTRUMENT:	SHIMADZU G	C14A RIGHT	<u> </u>			
					INUING STAND	ARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,612	130.6	18.4%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.0	2,610	130.5	6.2%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,800	240.0	8.9%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	165	8.3	11.3%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	224	11.2	6.7%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	358	17.9	14.4%
TETRACHLORO ETHENE	PID	12.5	20	14.4	260	13.0	4.0%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	3,122	156.1	18.3%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,269	113.5	17.3%
TRICHLORO ETHENE	PID	16.1	20	10.6	316	15.8	1.9%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	317	15.9	2.2%
BENZENE	PID	27.0	20	9.5	466	23.3	13.7%
ETHYLBENZENE	PID	27.1	20	16.3	480	24.0	11.4%
TOLUENE	PID	26.9	20	13.0	521	26.1	3.2%
m&p-XYLENES	PID	31.8	40	16.5	1,143	28.6	10.1%
o-XYLENE	PID	26.3	20	17.6	532	26.6	1.1%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	211	10.6	2.3%
CHLOROBENZENE	PID	24.6	20	16.2	482	24.1	2.0%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.3	831	41.6	1.1%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/21/98			SUPPLY SO	OURCE:	CONTINUI	NG CALIBR	ATION (OP	ENING) A	CCUSTA	NDARD LO	T # A71201	60
TEG Project #981021W1		;	SUPPLY SO	OURCE:	QUALITY O	ONTROL (CLOSING)	ACCUSTA	NDARD	LOT # A712	0170	
WINNEBAGO 1			NSTRUME	NT: SH	IMADZU GO	C14A RIGH	ΓÍ					
				OPE	NING STAN	DARD			CLO	SING STANI	DARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,286	114.3	3.6%	20	9.4	1,867	93.4	15.4%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,168	108.4	11.8%	20	7.1	2,494	124.7	1.5%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,449	222.5	1.0%	20	9.5	3,799	190.0	13.8%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	162	8.1	12.9%	20	5.4	158	7.9	15.1%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	220	11.0	8.3%	20	7.9	254	12.7	5.8%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	413	20.7	1.2%	20	6.4	393	19.7	6.0%
TETRACHLORO ETHENE	PID	12.5	20	14.4	272	13.6	8.8%	20	14.5	276	13.8	10.4%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,621	131.1	0.6%	20	8.9	2,576	128.8	2.4%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,066	103.3	6.8%	20	13.8	1,914	95.7	1.0%
TRICHLORO ETHENE	PID	16.1	20	10.6	305	15.3	5.3%	20	10.6	306	15.3	5.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	301	15.1	7.1%	20	5.3	339	17.0	4.6%
BENZENE	PID	27.0	20	9.5	539	27.0	0.2%	20	9.6	532	26.6	1.5%
ETHYLBENZENE	PID	27.1	20	16.3	606	30.3	11.8%	20	16.4	587	29.4	8.3%
TOLUENE	PID	26.9	20	13.0	556	27.8	3.3%	20	13.1	545	27.3	1.3%
m&p-XYLENES	PID	31.8	40	16.5	1,292	32.3	1.6%	40	16.6	1,250	31.3	1.7%
o-XYLENE	PID	26.3	20	17.6	541	27.1	2.9%	20	17.7	498	24.9	5.3%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	237	11.9	9.7%	20	9.9	232	11.6	7.4%
CHLOROBENZENE	PID	24.6	20	16.2	503	25.2	2.2%	20	16.3	483	24.2	1.8%
4 BROMOFLUORO BENZENE	PID_	41.1	20	19.3	881	44.1	7.2%	20	19.4	813	40.7	1.1%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

TEG Project #981021W1 SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170 **WINNEBAGO 1** INSTRUMENT: SHIMADZU GC14A RIGHT **CONTINUING STANDARD** COMPOUND DETECTOR **AVE RF MASS** RT **AREA** RF %DIFF CARBON TETRACHLORIDE HALL 110.3 20 9.3 2,355 117.8 1.1-DICHLORO ETHANE HALL 122.9 20 7.1 2,598 129.9 1,2-DICHLORO ETHANE HALL 220.3 20 9.5 5.028 251.4 1,1-DICHLORO ETHENE PID 9.3 20 5.4 151 7.6 CIS-1,2-DICHLORO ETHENE PID 12.0 20 7.9 221 11.1

6.8% 5.7% 14.1% 18.8% 7.9% TRANS-1,2-DICHLORO ETHENE PID 20.9 20 6.4 375 18.8 10.3% TETRACHLORO ETHENE PID 12.5 20 14.4 264 13.2 5.6% 1,1,1-TRICHLORO ETHANE HALL 131.9 20 8.9 2,844 142.2 7.8% 1,1,2-TRICHLORO ETHANE HALL 96.7 20 13.7 2,283 114.2 18.0% TRICHLORO ETHENE PID 16.1 20 10.6 265 13.3 17.7% 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) HALL 16.2 20 5.2 318 15.9 1.9% BENZENE PID 27.0 20 9.5 480 24.0 11.1% ETHYLBENZENE PID 27.1 20 16.3 541 27.1 0.2% TOLUENE PID 26.9 20 13.0 536 26.8 0.4% m&p-XYLENES PID 31.8 40 16.5 1,219 30.5 4.2% o-XYLENE PID 26.3 20 17.6 525 26.3 0.2% 1.4 DIFLUORO BENZENE PID 10.8 20 9.9 199 10.0 7.9% CHLOROBENZENE PID 24.6 20 16.2 544 27.2 10.6% 4 BROMOFLUORO BENZENE PID 41.1 20 19.3 825 41.3 0.4% ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER DATA REVIEWED BY: DR. BLAYNE HARTMAN

DATE: 10/21/98

DATE: 10/22/98			SUPPLY SO	OURCE:	CONTINUI	NG CALIBR	ATION (OF	PENING) A	CCUSTA	NDARDIO	T # A71201	60
TEG Project #981022W1	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160 SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170											
WINNEBAGO 1			NSTRUME	NT: SH	IMADZU GO	C14A RIGH	Τ			201 11 /1/12		
		OPENING STANDARD CLOSING STANDARD										
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.4	2,406	120.3	9.1%	20	9.4	2,425	121.3	9.9%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,537	126.9	3.2%	20	7.1	2,052	102.6	16.5%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,890	244.5	11.0%	20	9.5	3,989	199.5	9.5%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	191	9.6	2.7%	20	5.4	182	9.1	2.2%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	273	13.7	13.8%	20	7.9	263	13.2	9.6%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.5	472	23.6	12.9%	20	6.4	456	22.8	9.1%
TETRACHLORO ETHENE	PID	12.5	20	14.5	267	13.4	6.8%	20	14.5	267	13.4	6.8%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,994	149.7	13.5%	20	8.9	2,740	137.0	3.9%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.8	1,795	89.8	7.2%	20	13.8	2,248	112.4	16.2%
TRICHLORO ETHENE	PID	16.1	20	10.6	341	17.1	5.9%	20	10.6	324	16.2	0.6%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	333	16.7	2.8%	20	5.2	354	17.7	9.3%
BENZENE	PID	27.0	20	9.6	600	30.0	11.1%	20	9.6	583	29.2	8.0%
ETHYLBENZENE	PID	27.1	20	16.4	536	26.8	1.1%	20	16.4	642	32.1	18.5%
TOLUENE	PID	26.9	20	13.1	600	30.0	11.5%	20	13.1	588	29.4	9.3%
m&p-XYLENES	PID	31.8	40	16.6	1,367	34.2	7.5%	40	16.6	1,345	33.6	5.7%
o-XYLENE	PID	26.3	20	17.7	583	29.2	10.8%	20	17.7	566	28.3	7.6%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	236	11.8	9.3%	20	10.0	244	12.2	13.0%
CHLOROBENZENE	PID	24.6	20	16.3	511	25.6	3.9%	20	16.4	503	25.2	2.2%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.4	935	46.8	13.7%	20	19.4	877	43.9	6.7%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/22/98

SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170 INSTRUMENT: SHIMADZU GC14A RIGHT TEG Project #981022W1

WINNEBAGO 1

THITLDIGGT	HOTTOMEIT.	OI IIIVIADEO C	OTTA NIGHT				
				CON	FINUING STAND	ARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,461	123.1	11.6%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,123	106.2	13.6%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,009	200.5	9.0%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	193	9.7	3.8%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	252	12.6	5.0%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	399	20.0	4.5%
TETRACHLORO ETHENE	PID	12.5	20	14.4	276	13.8	10.4%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,704	135.2	2.5%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,063	103.2	6.7%
TRICHLORO ETHENE	PID	16.1	20	10.5	310	15.5	3.7%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	286	14.3	11.7%
BENZENE	PID	27.0	20	9.5	564	28.2	4.4%
ETHYLBENZENE	PID	27.1	20	16.3	619	31.0	14.2%
TOLUENE	PID	26.9	20	13.0	541	27.1	0.6%
m&p-XYLENES	PID	31.8	40	16.5	1,308	32.7	2.8%
o-XYLENE	PID	26.3	20	17.5	549	27.5	4.4%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	233	11.7	7.9%
CHLOROBENZENE	PID	24.6	. 20	16.2	498	24.9	1.2%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.2	865	43.3	5.2%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/23/98 SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160 TEG Project #981023W1 SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170 **WINNEBAGO 1** INSTRUMENT: SHIMADZU GC14A RIGHT **OPENING STANDARD CLOSING STANDARD** COMPOUND DETECTOR AVERF MASS RT AREA RF %DIFF MASS RT AREA RF %DIFF CARBON TETRACHLORIDE HALL 110.3 20 9.4 2.216 110.8 0.5% 20 9.4 2,201 110.1 0.2% 1,1-DICHLORO ETHANE HALL 122.9 20 7.1 2.660 133.0 8.2% 20 7.1 2,328 116.4 5.3% 1,2-DICHLORO ETHANE HALL 220,3 20 9.6 4.582 229.1 4.0% 20 9.5 3,762 188.1 14.6% 1,1-DICHLORO ETHENE PID 9.3 20 5.4 186 9.3 0.0% 20 5.4 156 7.8 16.1% CIS-1,2-DICHLORO ETHENE PID 12.0 20 7.9 266 13.3 10.8% 20 7.9 256 12.8 6.7% TRANS-1.2-DICHLORO ETHENE PID 20.9 20 6.5 464 23.2 11.0% 20 6.5 389 19.5 6.9% TETRACHLORO ETHENE PID 12.5 20 14.5 270 13.5 8.0% 20 14.5 285 14.3 14.0% 1,1,1-TRICHLORO ETHANE HALL 131.9 20 8.9 2.883 144.2 9.3% 20 8.9 2,521 126.1 4.4% 1,1,2-TRICHLORO ETHANE HALL 96.7 20 13.8 2,130 106.5 10.1% 20 13.8 1,758 87.9 9.1% TRICHLORO ETHENE PID 16.1 20 10.6 331 16.6 2.8% 20 10.6 324 16.2 0.6% 1.1,2-TRICHLOROTRIFLUOROETHANE (FR113) HALL 16.2 20 5.2 317 15.9 2.2% 20 5.2 337 16.9 4.0% BENZENE PID 27.0 20 9.6 581 29.1 7.6% 20 9.6 573 28.7 6.1% ETHYLBENZENE PID 27.1 20 16.4 524 26.2 3.3% 20 16.4 616 30.8 13.7% TOLUENE PID 26.9 20 13.1 602 30.1 11.9% 20 13.1 576 28.8 7.1% m&p-XYLENES PID 31.8 40 16.6 1.382 34.6 8.6% 40 16.6 1.328 33.2 4.4% o-XYLENE PID 26.3 20 17.7 593 29.7 12.7% 20 17.7 562 28.1 6.8% 1,4 DIFLUORO BENZENE PID 10.8 20 10.0 219 11.0 1.4% 20 9.9 253 12.7 17.1% CHLOROBENZENE PID 24.6 20 16.4 509 25.5 3.5% 20 16.3 529 26.5 7.5% 4 BROMOFLUORO BENZENE PID

20

19.4

907

45.4

10.3%

20

19.4

853

42.7

3.8%

41.1

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/26/98			SUPPLY SO	OURCE:	CONTINUI	NG CALIBR	ATION (OF	ENING) A	CCUSTA	NDARD LO	T # A71201	60
TEG Project #981026W1	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170											
WINNEBAGO 1	*****		NSTRUME	NT: SH	IMADZU GO	14A RIGH	T					
									SING STAN	3 STANDARD		
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.4	2,309	115.5	4.7%	20	9.3	2,574	128.7	16.7%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,296	114.8	6.6%	20	7.1	2,210	110.5	10.1%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.6	3,794	189.7	13.9%	20	9.5	4.306	215.3	2.3%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	199	10.0	7.0%	20	5.4	157	7.9	15.6%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	264	13.2	10.0%	20	7.9	226	11.3	5.8%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.5	464	23.2	11.0%	20	6.4	389	19.5	6.9%
TETRACHLORO ETHENE	PID	12.5	20	14.5	280	14.0	12.0%	20	14.5	251	12.6	0.4%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,650	132.5	0.5%	20	8.9	3,012	150.6	14.2%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.8	1,956	97.8	1.1%	20	13.7	2,297	114.9	18.8%
TRICHLORO ETHENE	PID	16.1	20	10.7	310	15.5	3.7%	20	10.6	293	14.7	9.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	332	16.6	2.5%	20	5.2	286	14.3	11.7%
BENZENE	PID	27.0	20	9.6	589	29.5	9.1%	20	9.5	507	25.4	6.1%
ETHYLBENZENE	PID	27.1	20	16.4	616	30.8	13.7%	20	16.3	544	27.2	0.1%
TOLUENE	PID	26.9	20	13.1	591	29.6	9.9%	20	13.0	513	25.7	4.6%
m&p-XYLENES	PID	31.8	40	16.6	1,386	34.7	9.0%	40	16.5	1,207	30.2	5.1%
o-XYLENE	PID	26.3	20	17.7	597	29.9	13.5%	20	17.6	512	25.6	2.7%
1,4 DIFLUORO BENZENE	PID	10.8	20	10.0	230	11.5	6.5%	20	9.9	211	10.6	2.3%
CHLOROBENZENE	PID	24.6	20	16.4	518	25.9	5.3%	20	16.3	487	24.4	1.0%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.4	932	46.6	13.4%	20	19.3	780	39.0	5.1%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/26/98
TEG Project #981026W1
SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170
WINNEBAGO 1
INSTRUMENT: SHIMADZU GC14A RIGHT

DETECTOR			CONT	TINUING STAND		
DETENTAN			CON			
DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF
HALL	110.3	20	9.2	2,199	110.0	0.3%
HALL	122.9	20	6.9	· ·		8.5%
HALL	220.3	20	9.3	· ·		14.3%
PID	9.3	20	5.3	153		17.7%
PID	12.0	20	7.7	216		10.0%
PID	20.9	20	6.3	375		10.3%
PID	12.5	20	14.3	287		14.8%
HALL	131.9	20				14.9%
HALL	96.7	20				7.3%
PID	16.1	20		•		1.6%
HALL	16.2	20	5.1			10.2%
PID	27.0	20	9.3			10.4%
PID	27.1	20	16.3			19.0%
PID	26.9	20	12.9	584		8.6%
PID	31.8	40	16.4	1,316		3.5%
PID	26.3	20	17.5	570		8.4%
PID	10.8	20	9.7	200		7.4%
PID	24.6	20	16.2	498		1.2%
PID	41.1	20	19.2	904		10.0%
	HALL HALL PID PID PID HALL PID HALL PID PID PID PID PID PID PID PID PID PID	HALL 110.3 HALL 122.9 HALL 220.3 PID 9.3 PID 12.0 PID 20.9 PID 12.5 HALL 131.9 HALL 96.7 PID 16.1 HALL 16.2 PID 27.0 PID 27.0 PID 27.1 PID 26.9 PID 31.8 PID 26.3 PID 10.8 PID 24.6 PID 41.1	HALL 110.3 20 HALL 122.9 20 HALL 220.3 20 PID 9.3 20 PID 12.0 20 PID 20.9 20 PID 12.5 20 HALL 131.9 20 HALL 96.7 20 PID 16.1 20 HALL 16.2 20 PID 27.0 20 PID 27.1 20 PID 27.1 20 PID 26.9 20 PID 31.8 40 PID 26.3 20 PID 10.8 20 PID 24.6 20	HALL 110.3 20 9.2 HALL 122.9 20 6.9 HALL 220.3 20 9.3 PID 9.3 20 5.3 PID 12.0 20 7.7 PID 20.9 20 6.3 PID 12.5 20 14.3 HALL 131.9 20 8.7 HALL 96.7 20 13.6 PID 16.1 20 10.4 HALL 16.2 20 5.1 PID 27.0 20 9.3 PID 27.1 20 16.3 PID 27.1 20 16.3 PID 26.9 20 12.9 PID 31.8 40 16.4 PID 26.3 20 17.5 PID 26.6 20 9.7 PID 26.6 20 16.2 PID 24.6 20 16.2 PID 41.1 20 19.2	HALL 110.3 20 9.2 2,199 HALL 122.9 20 6.9 2,250 HALL 220.3 20 9.3 5,034 PID 9.3 20 5.3 153 PID 12.0 20 7.7 216 PID 20.9 20 6.3 375 PID 12.5 20 14.3 287 HALL 131.9 20 8.7 3,031 HALL 96.7 20 13.6 2,076 PID 16.1 20 10.4 317 HALL 16.2 20 5.1 357 PID 27.0 20 9.3 484 PID 27.1 20 16.3 645 PID 27.1 20 16.3 645 PID 26.9 20 12.9 584 PID 31.8 40 16.4 1,316 PID 26.3 20 9.7 200 PID 10.8 20 9.7 200 PID 24.6 20 16.2 498 PID 24.6 20 16.2 498 PID 24.6 20 16.2 498 PID 41.1 20 19.2	HALL 110.3 20 9.2 2,199 110.0 HALL 122.9 20 6.9 2,250 112.5 HALL 220.3 20 9.3 5,034 251.7 PID 9.3 20 5.3 153 7.7 PID 12.0 20 7.7 216 10.8 PID 20.9 20 6.3 375 18.8 PID 12.5 20 14.3 287 14.4 HALL 131.9 20 8.7 3,031 151.6 HALL 96.7 20 13.6 2,076 103.8 PID 16.1 20 10.4 317 15.9 HALL 16.2 20 5.1 357 17.9 PID 27.0 20 9.3 484 24.2 PID 27.1 20 16.3 645 32.3 PID 26.9 20 12.9 584 29.2 PID 31.8 40 16.4 1,316 32.9 PID 26.3 20 9.7 200 10.0 PID 26.3 20 9.7 200 10.0 PID 24.6 20 16.2 498 24.9 PID 41.1 20 19.2 904 45.2

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MR. ALLEN GLOVER

DATA REVIEWED BY: DR. BLAYNE HARTMAN

DATE: 10/27/98

TEG Project #981027W1

WINNEBAGO 1

SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160

SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170

INSTRUMENT: SHIPLED

OPENING OF AND A DEC.

			OPENING STANDARD CLOSING STANDARD										
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF	MASS	RT	AREA	RF	%DIFF	
CARBON TETRACHLORIDE	HALL	110.3	20	9.4	2,508	125.4	13.7%	20	9.3	2,350	117.5	6.5%	
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,144	107.2	12.8%	20	7.1	2,418	120.9	1.6%	
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,155	207.8	5.7%	20	- 9.4	4,610	230.5	4.6%	
1,1-DICHLORO ETHENE	PID	9.3	20	5.5	182	9.1	2.2%	20	5.4	152	7.6	18.3%	
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	8.0	224	11.2	6.7%	20	7.9	222	11.1	7.5%	
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.5	430	21.5	2.9%	20	6.4	388	19.4	7.2%	
TETRACHLORO ETHENE	PID	12.5	20	14.5	251	12.6	0.4%	20	14.4	273	13.7	9.2%	
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,785	139.3	5.6%	20	8.9	2,811	140.6	6.6%	
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.8	2,124	106.2	9.8%	20	13.7	2,242	112.1	15.9%	
TRICHLORO ETHENE	PID	16.1	20	10.6	278	13.9	13.7%	20	10.5	273	13.7	15.2%	
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.3	294	14.7	9.3%	20	5.2	350	17.5	8.0%	
BENZENE	PID	27.0	20	9.6	499	25.0	7.6%	20	9.5	498	24.9	7.8%	
ETHYLBENZENE	PID	27.1	20	16.3	514	25.7	5.2%	20	16.2	535	26.8	1.3%	
TOLUENE	PID	26.9	20	13.1	512	25.6	4.8%	20	13.0	579	29.0	7.6%	
m&p-XYLENES	PID	31.8	40	16.5	1,232	30.8	3.1%	40	16.4	1,313	32.8	3.2%	
o-XYLENE	PID	26.3	20	17.6	480	24.0	8.7%	20	17.5	565	28.3	7.4%	
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	211	10.6	2.3%	20	9.8	207	10.4	4.2%	
CHLOROBENZENE	PID	24.6	20	16.3	517	25.9	5.1%	20	16.1	569	28.5	15.7%	
4 BROMOFLUORO BENZENE	PID	41.1	20	19.3	824	41.2	0.2%	20	19.1	863	43.2	5.0%	

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/27/98

TEG Project #981027W1 WINNEBAGO 1 SUPPLY SOURCE: QUALITY CONTROL (CONTINUING) ACCUSTANDARD LOT # A7120170 INSTRUMENT: SHIMADZU GC14A RIGHT

WINNEBAGO	INSTRUMENT.	SHIMADZO G	CIAN KIGH	·			
				CONT	FINUING STAND	ARD	
COMPOUND	DETECTOR	AVE RF	MASS	RT	AREA	RF	%DIFF
CARBON TETRACHLORIDE	HALL	110.3	20	9.3	2,374	118.7	7.6%
1,1-DICHLORO ETHANE	HALL	122.9	20	7.1	2,664	133.2	8.4%
1,2-DICHLORO ETHANE	HALL	220.3	20	9.5	4,467	223.4	1.4%
1,1-DICHLORO ETHENE	PID	9.3	20	5.4	152	7.6	18.3%
CIS-1,2-DICHLORO ETHENE	PID	12.0	20	7.9	221	11.1	7.9%
TRANS-1,2-DICHLORO ETHENE	PID	20.9	20	6.4	376	18.8	10.0%
TETRACHLORO ETHENE	PID	12.5	20	14.4	265	13.3	6.0%
1,1,1-TRICHLORO ETHANE	HALL	131.9	20	8.9	2,675	133.8	1.4%
1,1,2-TRICHLORO ETHANE	HALL	96.7	20	13.7	2,186	109.3	13.0%
TRICHLORO ETHENE	PID	16.1	20	10.5	273	13.7	15.2%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	HALL	16.2	20	5.2	359	18.0	10.8%
BENZENE	PID	27.0	20	9.5	494	24.7	8.5%
ETHYLBENZENE	PID	27.1	20	16.3	598	29.9	10.3%
TOLUENE	PID	26.9	20	13.0	543	27.2	0.9%
m&p-XYLENES	PID	31.8	40	16.4	1,276	31.9	0.3%
o-XYLENE	PID	26.3	20	17.5	526	26.3	0.0%
1,4 DIFLUORO BENZENE	PID	10.8	20	9.9	204	10.2	5.6%
CHLOROBENZENE	PID	24.6	20	16.2	487	24.4	1.0%
4 BROMOFLUORO BENZENE	PID	41.1	20	19.2	838	41.9	1.9%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)

DATE: 10/28/98 SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) ACCUSTANDARD LOT # A7120160 TEG Project #981028W1 SUPPLY SOURCE: QUALITY CONTROL (CLOSING) ACCUSTANDARD LOT # A7120170 WINNEBAGO 1 INSTRUMENT: SHIMADZU GC14A RIGHT **OPENING STANDARD CLOSING STANDARD** COMPOUND DETECTOR **AVE RF** MASS RT **AREA** RF %DIFF **MASS** RT **AREA** RF %DIFF CARBON TETRACHLORIDE HALL 110.3 20 9.2 2.090 104.5 5.3% 20 9.3 1,969 98.5 10.7% 1,1-DICHLORO ETHANE HALL 122.9 20 7.0 2.161 108.1 12.1% 20 7.1 2,721 136.1 10.7% 1.2-DICHLORO ETHANE HALL 220.3 20 9.4 3,842 192.1 12.8% 20 9.5 3,879 194.0 12.0% 1,1-DICHLORO ETHENE PID 9.3 20 5.4 189 9.5 1.6% 20 5.4 163 8.2 12.4% CIS-1,2-DICHLORO ETHENE PID 12.0 20 7.8 214 10.7 10.8% 20 7.9 234 2.5% 11.7 TRANS-1,2-DICHLORO ETHENE PID 20.9 20 6.4 415 20.8 0.7% 20 6.4 371 18.6 11.2% TETRACHLORO ETHENE PID 12.5 20 14.3 238 11.9 4.8% 20 14.4 272 13.6 8.8% 1,1,1-TRICHLORO ETHANE HALL 131.9 20 8.8 2.507 125.4 5.0% 20 8.9 2,457 122.9 6.9% 1.1.2-TRICHLORO ETHANE HALL 96.7 20 13.6 2.024 101.2 4.7% 20 13.7 2,057 102.9 6.4% TRICHLORO ETHENE PID 16.1 20 10.5 296 14.8 8.1% 20 10.6 265 13.3 17.7% 1,1,2-TRICHLOROTRIFLUOROETHANE (FR113) HALL 16.2 20 5.2 346 17.3 6.8% 20 5.2 347 17.4 7.1% BENZENE PID 27.0 20 9.4 488 24.4 9.6% 20 9.5 492 24.6 8.9% ETHYLBENZENE PID 27.1 20 16.2 511 25.6 5.7% 20 16.3 530 26.5 2.2% TOLUENE PID 26.9 20 12.9 511 25.6 5.0% 20 13.0 556 27.8 3.3% m&p-XYLENES PID 31.8 40 16.3 1,110 27.8 12.7% 40 16.5 1.266 31.7 0.5% o-XYLENE PID 26.3 20 17.4 503 25.2 4.4% 20 17.6 522 26.1 0.8% 1.4 DIFLUORO BENZENE PID 10.8 20 9.8 211 10.6 2.3% 20 9.9 199 10.0 7.9% CHLOROBENZENE PID 24.6 20 16.1 502 25.1 2.0% 20 16.2 535 26.8 8.7% 4 BROMOFLUORO BENZENE PID 41.1 20 19.0 804 40.2 2.2% 20 19.2 833 41.7 1.3%

ANALYSES PERFORMED ON-SITE IN TEG'S DOHS CERTIFIED MOBILE LABORATORY (CERT #1745)